
AUTHOR

FI
NAL

VERSIO
N

A Bayesian approach to mitigation of publication bias
Maime Guana and Joachim Vandekerckhovea,†

Author final version.

Guan, M., & Vandekerckhove, J. (2016). A Bayesian approach to mitigation of publication bias. Psychonomic Bulletin & Review, 23, 74–86.

The reliability of published research findings in psychology has been a topic of rising concern. Publication bias, or treating positive findings
differently from negative findings, is a contributing factor to this “crisis of confidence,” in that it likely inflates the number of false positive
effects in the literature. We demonstrate a Bayesian model averaging approach that takes into account the possibility of publication bias and
allows for a better estimate of true underlying effect size. Accounting for the possibility of bias leads to a more conservative interpretation
of published studies as well as meta-analyses. We provide mathematical details of the method and examples.
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It is reasonably well established that publication bias—a differential
publishing rate between positive and negative results—permeates
the scientific literature (Franco, Malhotra, & Simonovits, 2014).
Some of the strongest such claims are made by Ioannidis (2005),
who famously concluded that “most claimed research findings are
false” (p. 696). Decades earlier, Rosenthal (1979) had pointed
out the theoretical possibility that all research findings are false,
and that file drawers around the world conceal the 95% of studies
whose luck of the draw did not lead to publication. The prevalence
of publication bias has been a growing concern in psychology,
especially in recent years, and is often mentioned as one of the
causes of the “crisis of confidence” (Pashler & Wagenmakers,
2012). As Young, Ioannidis, and Al-Ubaydli (2008) point out, “the
small proportion of results chosen for publication are unrepresenta-
tive of scientists’ repeated samplings of the real world” (p. 1418) It
is no wonder, then, that successful replication attempts are scarce
(e.g., Francis, 2012a).

The favorable results preferred by systemic publication bias are
often defined by statistical significance. Results are said to be
‘significant’ if the probability p of observing data that are at least as
extreme as the observed is smaller than some criterion α if the null
hypothesis is true. The conventional criterion (for psychological
scientists) in null hypothesis significance testing (NHST), α = .05,
sets a convenient bar for consideration by researchers and review-
ers alike. However, the presence of an arbitrary threshold may
contribute to the number of positive findings reported in the liter-
ature. Masicampo and Lalande (2012) surveyed the distributions
of p-values in three prominent psychological journals and found
that p-values were conspicuously more common than expected
just below α.

To tackle this important and widespread issue of publication
bias, the field can endeavor to prevent future cases, as well as take
action to alleviate the current state of psychological science. Our
focus is on the latter goal of mitigation, by postulating a set of pos-
sible bias mechanisms and using these to improve the estimation
of effect sizes in the presumed presence of publication bias.
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The idea of publication bias detection is not new—there exist
tests for it in the literature (e.g., the test for “excess significance”
based on Ioannidis & Trikalinos, 2007), and these have been ap-
plied on numerous occasions (e.g., Francis, 2012a, 2012b, 2012c).
Neither are we the first to propose behavioral models of the pub-
lication process (Givens, Smith, & Tweedie, 1997; Greenwald,
1975; Hedges, 1992), and there are several recently-developed
approaches to deal with publication bias.

One such new method, based on the p-curve, is due to
Simonsohn, Nelson, and Simmons (2014). The p-curve is the
distribution of statistically significant p-values for a set of indepen-
dent findings. The exact shape of the p-curve is used to determine
the evidential value of that particular set of findings, or the set’s
ability to rule out selective reporting as the sole explanation of
those findings. The central intuition is that if the null hypothesis is
true,1 p-curves are expected to be uniform, but if the null is false,
only right-skewed p-curves with more low than high significant
p-values are diagnostic of evidential values. The p-curve method
assesses if the observed p distribution is significantly right-skewed.
Inference from p-curve is analogous to null hypothesis significance
testing; a right-skewed p-curve does not imply all studies have
evidential value, similar to how significance does not imply all
observations were influenced by the experimental manipulation.
Therefore, p-curve can only determine whether selective reporting
can be ruled out as an explanation for a set of significant find-
ings and cannot make conclusions about estimates of the true
underlying population effect size.

Stanley and Doucouliagos (2013) propose another approach
consisting of a set of meta-regression approximations that are
designed to be a practical solution to the publication bias issue.
This method is developed from Taylor polynomial approximations
to the conditional mean of a truncated distribution, because results
are selected to be statistically significant in the desirable direction.
The observed effects will consequently depend on the population’s
true effect, plus another term that reflects selection bias. A critical
limitation of this method is that it requires a relatively large number
of estimates on the same empirical phenomenon because they are
based on regression analysis.

1That is, if the effect size is truly zero, and all the ancillary assumptions of the significance test are
met. It is important to keep in mind that there are many ways for a null hypothesis to be violated. In
the case of a t test, p is not uniformly distributed if there is heteroskedasticity or if the conditional
distributions are not normal. The p-curve is also not uniform in the case of compund hypotheses
such as a one-tailed t test.
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Lastly, p-uniform (van Assen, van Aert, & Wicherts, 2014) is
again based on the distribution of p-values conditional on a certain
population effect size µ. For example, if the true population effect
size is zero, then the conditional p-value distribution should be
close to the uniform distribution. Therefore, p-uniform tests the null
hypothesis by testing whether the observed conditional p-value
distribution deviates from the uniform. This method performs three
tasks simultaneously: (a) the testing of publication bias; (b) effect
size estimation, and (c) the testing of the null hypothesis of no
effect. p-uniform only considers studies that report statistically
significant results, so those containing non-significant effects are
discarded. p-uniform makes two assumptions: (1) homogeneity of
population effect size across all studies and (2) that all studies with
statistically significant results are equally likely to be published and
included in the meta-analysis. According to the authors, p-uniform
is the first method to possess the aforementioned three qualities,
without making sophisticated assumptions or choices.

Our proposed Bayesian mitigation method encompasses these
characteristics as well, in addition to being a Bayesian approach
to detect and mitigate the effects of publication bias in the field.
We believe we are the first to attempt mitigation of publication bias
by—as we will demonstrate—averaging over a set of plausible
behavioral models. Our interest is foremost in recovering the true
underlying effect size as accurately as possible, and not neces-
sarily to decide whether a particular field exhibits more or less
publication bias.

Behavioral models for publication bias

We postulate a set of four generative behavioral models for the
publication process. While this set is not exhaustive, we believe it
covers a reasonably large range of possible processes. The first
model is a no-bias model under which all results, regardless of
statistical significance, are published. This would be the optimal
scenario for the scientific literature, but it is unlikely to hold in all
cases. The second model is an extreme-bias model in which non-
significant results are never published. The presence of occasional
nonsignificant results in the literature implies that this model can-
not hold in all cases either. The third model is one inspired by
Greenwald (1975), in which nonsignificant results are published
with some constant (but unknown) probability. Finally, the fourth
model is one inspired by Givens et al. (1997), in which the pub-
lication probability is an exponentially decreasing function of the
p-value if p > α (i.e., it diminishes as the observed p-value departs
from α = .05).2

For each of the four models, we consider two possible states
of nature: either (a) there exists a true effect of some unknown
magnitude; or (b) the true effect size is 0. While the behavioral
processes are conveniently described through a censoring function
that operates on the p-value, the state-of-nature component of
these models depends on the specific experiment to which our
method is applied (i.e., it depends on whether the experiment is
comparing two means with a t or a z test, or interactions with an
F or a χ2 test, etc.). Each of these models has, as a parameter,
the size of the experimental effect, and fitting these models to
the observed data (i.e., the reported effect size) will yield a new
estimate of the effect size conditional on the censoring process.

The general formulation of the likelihood function associated

2There is a fifth possible model, in which very high p-values are also more likely to be published,
because they are erroneously seen as providing evidence for the null. We describe a model with
this property in the Discussion but do not add it to our set of behavioral models here.
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Fig. 1. Predictions made by the eight proposed models. Left column: the censoring
functions for each of the four biasing processes, with on the horizontal axis the
observed p-value and on the vertical axis the probability of publication Ppub. Middle
and right column: the resulting truncated central (center) and noncentral (right) t

distributions after applying the censoring functions. The top row is the no-bias model,
where the resulting t distributions are simply the central and noncentral t distributions
untouched. For the remaining three rows, the t distributions are truncated to the
region of significance or downweighted in the complementary region, as determined
by the corresponding biasing functions. The figure illustrates that each behavioral
model generates t distributions with a unique shape.

with these models is:

p
(
δobs

∣∣ ηtrue,M,Θ
)
∝ p

(
δobs

∣∣ ηtrue)CM (δobs,Θ) ,
where δobs is an observed test statistic, ηtrue is the true effect
size (which may be 0 for some models), and CM is a model-
specific censoring function that describes the probability of an
observation of size δobs being published, given the parameters Θ
of the censoring process. Figure 1 summarizes the eight models,
and a comprehensive mathematical treatment of the models is
given in Appendix . Models of this form are known in the statistical
literature as selection models (e.g., ?, ?, ?, ?).

Bayesian model averaging

A critical issue is that, while we may define any number of behav-
ioral processes that censor the published literature, we do not know
which process, if any, was in play for a given report. However, there
exist standard statistical tools for dealing with the unknown. The
most common such tool is marginalizing over (a.k.a., “integrating
out”) an unknown:

p
(
ηtrue

∣∣ δobs) =
∑

p
(
ηtrue

∣∣M, δobs
)
P
(
M
∣∣ δobs) ,

where p
(
ηtrue

∣∣M, δobs
)

is the posterior distribution of the ef-
fect size under a censoring processM and given the observed
test statistic δobs. P

(
M
∣∣ δobs) is the probability that M hap-

pened given the observed data. Crucially, we treat the identity
of the censoring process M as merely another unknown and
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Fig. 2. Recovery of the mitigation method (squares) for a single paper, evaluated
under three different bias conditions, with three different sample sizes, and a range
of effect sizes. The classical effect size measure Hedges’ g (diamonds) is given
for comparison. Vertical lines extend one standard deviation in each direction. In
almost all scenarios, the mitigation method either outperforms the classical method,
or recovers the same effect size.

compute the likelihood of each possible value for ηtrue using the
probability of each model’s truth as a weight (equivalently, we
can compute the posterior distribution of a mitigated test statis-
tic δmit as a simple transformation of ηtrue). Computing those
weights—the posterior probabilities—for each model relies on the
same principle, combined with Bayes’ theorem: P

(
M
∣∣ δobs) =

p
(
δobs

∣∣M)P (M) /p
(
δobs
)
. p

(
δobs
)
, in turn, is obtained

through marginalization: p
(
δobs
)

=
∑

p
(
δobs

∣∣M)P (M).
Taken together, this yields the posterior distribution of δmit

given δobs, which we may then use to make inferences about the
existence or non-existence of an effect. In particular, we can now
quantify the degree to which the observation δobs changes how
likely we consider it that the true effect size is 0. The degree of
change from prior to posterior information is known as the Bayes
factor, and integrating over models in this way is commonly referred
to as Bayesian model averaging (for an introduction, see Hoeting,
Madigan, Raftery, & Volinsky, 1999).

Finally, in the case of multiple independent studies s =
1, . . . , S, and hence a set of multiple observed test statistics{
δobss
}S
s=1

, we can compute an aggregated posterior distribution

p
(
δmit

∣∣∣ {δobss }S
s=1

)
. The details of this computation are in the

Appendix.

Simulation studies. To demonstrate the effects of statistical mit-
igation, we performed a series of Monte Carlo studies, of which
we report four. All studies were based on 500 simulations of each
case.

(1) Single result re-analysis. In this Monte Carlo study, we simulated
a single empirical result regarding some hypothetical phenomenon

of a given effect size. In the simulation, the true effect size ranged
from 0 (no effect) to 0.3 (a large effect) in increments of 0.05. The
result of a one-sided paired t test (for positive effects) was then
either “published” or not, with the publication decision based on one
of three regimes: Either the finding was subjected to no publication
bias at all (“no bias”), or was subjected to extreme publication bias
(“only bias”; only significant effects published), or to a combination
of all four censoring functions (with equal probability; “mixture”).
This implies that oftentimes no result was published, so there was
nothing to compute. In the cases where a result was published,
we applied our mitigation method to improve the estimate of the
underlying effect size. In addition to the three biasing regimes, we
also manipulated the simulated sample size n, which was either
small (n = 20), medium (n = 60), or large (n = 150). These
values were inspired by Marszalek, Barber, Kohlhart, and Holmes
(2011)’s review of typical sample sizes in experimental psychology.

Each panel in Figure 2 represents one regime × sample size
combination, with the horizontal axis indicating the true value of the
effect size and the vertical axis representing the estimated effect
size. Squares indicate our mitigated effect size, diamonds indicate
the classical effect size measure Hedges’ g (also computed in each
case on the basis of a single “published” effect size). Unbiased
estimates fall on the indicated diagonal.

In almost all cases, the mitigated effect size is closer to the true
effect size than the classical estimator. As the degree of publication
bias increases, both measures perform worse, but the effect of
publication bias on the classical estimator is dramatic while the
effect on the new estimator is comparatively modest. Both methods
converge to the true value as the sample size n in the simulated
papers increases,3 and in the no-bias scenario Hedges’ g is exact
(on average).

(2) Meta-analysis. In the second Monte Carlo study, we simulated a
situation in which ten independent studies were conducted on the
same hypothetical phenomenon of a given effect size. Again, our
effect sizes ranged from 0 to 0.3 in increments of 0.05. For each
of the ten studies, the result of a one-sided paired t test was either
published or not, under the same three regimes as above, so that
some proportion of the results was visible in the literature. We also
again manipulated the simulated sample size n, which was either
small (n = 20), medium (n = 60), or large (n = 150), and which
was the same for all studies in each set. The “unpublished” results
were discarded, and meta-analytic effect sizes computed, either
using our new method, or using the aggregated Hedges’ g.

Figure 3 is set up in the same way as Figure 2, with each panel
representing one regime × sample size combination; horizontal
axes indicating the true value of the effect size and vertical axes
representing the estimated effect size; Squares indicate our miti-
gated effect size and diamonds indicate the classical aggregated
effect size Hedges’ g (also computed only on the basis of the
“published” effect sizes).

It is again true that in almost all cases, the mitigated effect size
is closer to the true effect size, and that the effect of increasing
publication bias is greater for the classical estimator than for the
new estimator.

(3,4) Meta-analysis with different priors. The final two Monte Carlo
studies served to illustrate the sensitivity of our analyses to the
prior distribution over models. For this purpose, we repeated

3For large effect sizes and large sample sizes, the numerical integration required to compute the
mitigated effect size becomes somewhat time-consuming, so we omit those conditions from the
studies reported in Figures 2 and 3 while we work to make the software more efficient.
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Fig. 3. Recovery of the mitigation method (squares) for a simulated literature of 10
papers, of which only a biased subset is visible to the method, evaluated under three
different bias conditions, with three different sample sizes, and a range of effect sizes.
The classical effect size measure Hedges’ g (diamonds) is given for comparison. In
almost all scenarios, the mitigation method either outperforms the classical method,
or recovers the same effect size.

the meta-analytical design of the second Monte Carlo study
with two alternative prior distributions. Our default prior was
(20, 20, 1, 1, 1, 1, 1, 1) /46 (see Appendix for a rationale), but in
these simulations we changed it first to (20, 0, 1, 0, 1, 0, 1, 0) /23,
eliminating the null hypothesis, and then to (0, 0, 0, 0, 1, 1, 1, 1) /4,
eliminating all but the two more nuanced biasing processes. The
qualitative effect of these changes on the recovery performance
was negligible, and we do not discuss them here.

Example applications

Wishful seeing. We now consider a single test within a published
paper. Balcetis and Dunning (2010) reported evidence for “wishful
seeing,” a phenomenon in which desirable objects are perceived
to be physically closer than other objects that are less desirable.
This effect, the authors suggest, serves the function of energizing
the perceiver to engage in actions that lead to the goal of obtaining
the desirable object. In one study, participants were asked to
position themselves at a certain distance relative to an object. The
authors hypothesized that participants would stand further from a
desirable object (chocolates) than from an undesirable one (feces),
because desirable chocolate would be misperceived as physically
closer. In line with their prediction, the authors found a significant
effect on perceived distance depending on whether participants
saw chocolates or feces (unpaired t50 = 2.29, p = .026, Hedges’
g = 0.64).

Using only the reported t value and sample size, and making
no assumptions beyond those requisite for the t test and a prior
on effect size Hedges’ g = t

√
(nf + nc)/(nfnc), we are able to

compute probabilities for each of the eight models (using formulas
given in Appendix ). These probabilities can then be used as
weights to compute a new, mitigated effect size (or, equivalently,

1+ 1− 2+ 2− 3+ 3− 4+ 4−
0

0.1

0.2

0.3

0.4

0.5

0.6

model

p
ro
b
a
b
il
it
y

÷2.66

×1.92

÷1.37 ÷1.99

 

 

effect size g

d
e
n
si
ty

 

 

B = 0.63

−2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5prior

posterior

prior

posterior

Fig. 4. Model results for the “wishful seeing” example. Left panel: Prior and posterior
probabilities over models. Numbers in the horizontal axis labels indicate the model,
+ and − indicate the states of nature (true effect vs. no true effect, resp.). Above
the bars we indicate the posterior ratio between the two states of nature within each
biasing model. For example, if we assume there is no bias at all (i.e.,M1 is true),
then we have 2.66 times more evidence for the effect than we do for the null, but if we
assume bias is extreme (i.e.,M2 is true), then we have 1.92 times more evidence for
the null than we do for the effect. Right panel: Prior and posterior distributions over
the true value of the effect size Hedges’ g. Both distributions have point masses at
g = 0 (i.e., a probability that the effect size is exactly zero owing to the inclusion of
the four no-effect models), which are displayed as bars. The height of the posterior
distribution at 0 is greater than that of the prior, indicating that the data support the
effect slightly more than the null. Aggregated over all models, there is 1.59 times
more evidence for the effect than there is for the null (1.59 = 1

0.63 ).

t value) that takes into account the possibility and likelihood of
biasing mechanisms.

The result of this exercise is displayed in Figure 4. The left panel
depicts prior (grey bars; see Appendix for a rationale of the choice
of prior model probabilities) and posterior (black bars) probabilities
of the eight models. The largest change in probability from prior
to posterior is seen in modelM2−: the extreme-bias model under
the assumption that the null hypothesis is true becomes almost 8
times more likely after taking into account the data. ModelM1+,
the model of no bias with the null hypothesis being false, received
the highest weight. The panel shows no compelling reason to
prefer the two more complex biasing processesM3 andM4.

The posterior distribution (black bars) quantifies what we know
intuitively: a significant t value results either from a true effect
reported in an unbiased world, or no true effect and an active
biasing process. From the posterior distribution, we also learn that
if we assume there is no publication bias, then there is about 2.66
times as much evidence for the alternative hypothesis as there
is for the null (by comparing the two leftmost black bars). If we
assume there is extreme bias, there is about 1.92 times as much
evidence for the null as there is for the alternative (by comparing
the next two black bars).

The right panel of Figure 4 shows the prior and posterior distri-
butions of the effect size parameter. Since half of the models under
consideration predict an effect size of exactly zero, the prior and
posterior probabilities of this null hypothesis are shown as bars in
the figure. The panel shows that the data reported by Balcetis and
Dunning (2010) do not deliver convincing evidence regarding the
effect. The probability that g = 0 is slightly lower after observing
the data than it was before (by 37%, since the Bayes factor B in
favor of the null hypothesis is 0.63).

In order to evaluate the sensitivity of our method to the prior
assumptions, we repeated the analysis under three scenarios that
differ in the prior. In alternative scenario 1, we give prior weight only
toM1. This is equivalent to a default Bayesian t-test using a unit-
information Bayes factor (as in Rouder, Speckman, Sun, Morey, &
Iverson, 2009), and yields a Bayes factor B = 2.81 against the null.

4 of 10 Guan et al.
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In alternative scenario 2, we distribute prior weight overM1 and
M2. This leads to a very similar inference but with a spike-and-slab
prior on the effect size that has a spike at g = 0. Now B = 1.34
against the null. In scenario 3, we consider only the models that
allow for an effect size (M1+,M2+,M3+, andM4+). Including
the possibility of bias turns the balance of evidence: B = 0.96.

Our primary analysis described above allows for both true null
effects and publication bias, and there the evidence for the null
was even stronger. It is clear from this example that the outcome
of revisiting a single empirical result depends to some extent on
whether or not we are willing to consider that the effect may be truly
zero, and whether or not we are willing to consider the possibility of
a biased publication process. However, the analysis as presented
here (in Fig. 4) allows for nuanced conclusions to accommodate
different prior assumptions.

Meta-analysis: Depression. Using the statistical mitigation ap-
proach, we can also mitigate the effects of publication bias in
meta-analyses. In this section, we consider Bolier et al.’s (2013)
meta-analysis of the effectiveness of positive psychology interven-
tions. Bolier et al. focused on the effects of positive psychology
interventions on subjective well-being, psychological well-being,
and depressive symptoms. We will focus on the effects on depres-
sive symptoms. The authors included a total of 14 studies that
looked at positive psychology interventions on depression. We
extracted the focal statistics (z-values) directly from Figure 4 in the
original article, and used those z-values for our mitigation analysis.

The results are depicted in Figure 5. The left panel shows
the prior and posterior probabilities over models. We observe
large increases in probability from prior to posterior in both models
M3− andM4−, the two more complex biasing models under the
assumption that the null hypothesis is true. In addition, model
M1− with no bias under the assumption that the null is true also
receives considerable weight: 8.48 times more than the no-bias
model with an effect (M1+). Results show next to no evidence in
support of any model that assumes the null hypothesis is false. The
right panel shows the prior and posterior probability distributions
of the effect size parameter z. The large weight of the various
null-effect models is seen here in the increased posterior density
at z = 0. The Bayes factor in favor of the null hypothesis is 27.81,
making the posterior probability of the null approximately 96.5%.

Meta-analysis: Sleep quality. In this section, we consider another
meta-analysis. Casement and Swanson (2012) conducted a meta-
analysis of imagery rehearsal therapy for post-trauma nightmares;
aggregating results from 9 papers. The original analysis evaluated
the effect of imagery rehearsal on three measures: nightmare
frequency, sleep quality, and posttraumatic stress. We will revisit
the effect on sleep quality (as measured by the Pittsburgh Sleep
Quality Index or PSQI). We obtained the focal statistics from each
of the nine individual studies listed in Table 2 (p. 571) of Casement
and Swanson (2012).4

The Bayesian mitigation results of this meta-analysis are sum-
marized in Figure 6. From the left panel, it is clear that the most
posterior weight is given toM1+, the model under which there
is no bias and the null hypothesis is false (i.e., there is an effect
of imagery rehearsal on sleep quality). The rest of the models
receive negligible weight. In the right panel, we show the prior and
posterior distributions of the effect parameter measured in terms
of z values. It is evident here that the meta-analysis data from
Casement and Swanson (2012) indeed changes the information

4We thank Melynda Casement for kindly providing data pertaining to the meta-analysis.
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Fig. 5. Results for the depression meta-analysis. Left panel: Prior and posterior
probabilities over models. The most weight (and largest shift) is seen in the models
that suppose constant or exponential bias, with true effect size zero. The extreme-bias
model (M2) is falsified by the presence of non-significant results. Within each biasing
model, the posterior probability of the null model is much higher than that of the
effect model. Right panel: Prior and posterior distributions over the true value of the
test statistic z. The point mass at z = 0 is approximately 62.2% higher under the
posterior than under the prior. Given that the prior point mass on z = 0 was 50%
and the maximum shift is therefore by a factor of 2, this indicates a sizeable shift in
the weight of evidence towards the null value.
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Fig. 6. Results for the sleep quality meta-analysis. Left panel: Prior and posterior
probabilities over models. The exact posterior probabilities are printed. Right panel:
Prior and posterior distributions over the true value of z. The point mass at z = 0
is negligible under the posterior, indicating a strong shift in the weight of evidence
towards the hypothesis that there is a non-zero effect.

about the effect. The posterior mean z is approximately 0.614, and
the probability density at z = 0 is essentially zero—it is trillions
of times lower after observing the data than before (Bayes factor
against the null: 7 × 1015). Overall, our results show that after
taking into account the possibility of various forms of publication
bias, this meta-analysis indicates that imagery rehearsal is indeed
effective in improving sleep quality.

Discussion

We have outlined a novel method for inference regarding published
effects. Our method is based on the assumption that there may
be processes biasing the visibility of empirical studies, and relies
on probability calculus to perform inference conditional on this
possibility. The method has many desirable qualities that resonate
well with intuitions researchers have about science and statistics.
All that is required to apply the method is the published effect sizes.
Sets of studies that consist exclusively of just-significant findings—
which indicates that bias is likely, and non-significant findings are
disproportionally hidden from the literature—are rendered inconclu-
sive or indicative of only very small effects, while sets that contain
effects of various sizes (including non-significant ones) provide
more evidence for relatively larger effects. Unlike classical null
hypothesis significance testing, our Bayesian method allows for

Guan et al. Cognition and Individual Differences lab | University of California, Irvine | cidlab.com | December 10, 2023 | 5



AUTHOR

FI
NAL

VERSIO
N

the affirmation of the null hypothesis as well as its falsification, in
addition to allowing for the inclusion of prior information.

Throughout, we focus on the empirical literature on a topic as
the population of interest: For the purposes of effect size estima-
tion across papers, all included studies should report on the same
effect so that our mitigated effect size has a clear interpretation.
However, we do not see the model probabilities as parameters to
be estimated for any population. Instead, we think of the entire
biasing process as an inhomogeneous mixture of various censor-
ing mechanisms. Any given paper, under a given set of fleeting
circumstances, may fit the assumptions of any model or some
combination of them.

There are some potential caveats with the approach we present
here. First, there is the issue that assuming the possibility of
publication bias makes the analysis overly conservative in the
case where publication bias does not occur. However, we believe
that in most common use cases, this is not a concern as we
know publication bias to be a widespread issue. More generally,
our method requires the explicit inclusion of domain knowledge
both in the formulation of the biasing processes, their relative
probabilities, and the prior distribution of the effect sizes. We
believe the assumptions we have chosen are (a) both sensible
and in line with what is known of the field and (b) superior to the
assumption of no publication bias that is implicit in all classical
analyses.

Second, the censoring processes that we propose all assume
that significant results are always published. Clearly this is not
the case—papers submitted for publication are often rejected even
bearing statistically significant results. However, we do not believe
that there exists any systematic suppression of results because
they were statistically significant to such an extent that it is skewing
the literature at a scale comparable to the bias against the null.
Furthermore, it is reasonable to assume that those papers with sig-
nificant results that are not published often have issues unrelated
to the outcome, for example with the experimental design (which
would preclude use in meta-analysis in its own right). Finally, if
indeed a nonignorable fraction of significant results goes unpub-
lished, randomly, even though the applied methods are sound, then
a valid interpretation of our censoring functions is simply that they
describe the probability of publication of a nonsignificant result
relative to the probability of publication of a significant result, with
as only restriction that the former is no greater than the latter, which
we consider a very weak assumption.

Third, there may be other biasing mechanisms in addition to
the ones we propose here. However, we believe that the set of
processes we consider spans a reasonably large range of possible
mechanisms—that is, we struggle to think of biasing mechanisms
that will yield fundamentally different censoring functions. One
possible exception is a practice known as “hypothesizing after
the results are known” (HARKing), which may in fact cause an
overrepresentation of results that are clearly nonsignificant (e.g.,
p > .50), because these results are declared non-pivotal after
they are known, and are then reported parenthetically in a paper
with a different focal test. We decided not to include a HARKing
model here because such a model would apply to a different set of
observations (such as “non-pivotal statistics,” which are published
statistics that are not used to support inference regarding a new
finding or that are otherwise irrelevant for the main narrative of a
paper; e.g., manipulation checks and failed secondary manipula-
tions). A possible HARKing model is formally very similar toM4,
but predicts that the probability of publishing nonsignificant findings

increases as e−γ(1−p). Another biasing mechanism for which we
do not currently account is academic fraud.

Fourth, our meta-analyses as we have implemented them here
make the assumption of independence between studies. In prac-
tice, this assumption may be wrong and biases may tend to be
correlated (positively in the case of labs repeatedly publishing on
the same topic, but negatively in the case of adversarial replication
attempts).5 Our Bayesian model averaging framework allows us
to account for correlated bias in the same way we deal with other
unknowns: marginalization over the unknown quantity. We provide
the equations for such an exercise in Appendix , but leave the im-
plementation of this analysis aside until a computationally efficient
treatment for this case is developed.

Finally, we wish to emphasize again the subjectivity of some
of the assumptions we have made, and the fact that reasonable
people can reasonably disagree in the case of differing prior as-
sumptions. The method that we have outlined allows for the inclu-
sion of a wide variety of prior assumptions, and it may be improved
by further psychological research in the behavioral processes of
publication bias.
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Behavioral models of publication bias

Here we detail the behavioral models of publication bias that we employ to mitigate the effects of bias on reported effect sizes, and we
describe the details of the Bayesian inference methods that we apply to these models. For convenience of exposition, we will focus on
unpaired t tests, but the method extends to other parametric tests based on p-values.

In the description of the models that follows, p (·) will indicate a likelihood function, t (· | ν) will indicate the probability density function
of a central t distribution with ν degrees of freedom and t’ (· |x, ν) of the noncentral t distribution with noncentrality parameter x. T (· | ν)
and T ’ (· |x, ν) indicate their respective cumulative distribution functions. n1 and n2 will be the sample sizes in two groups. δobs will
indicate a test statistic (TS) obtained from the sample. A ‘true’ effect size (ES) will be indicated ηtrue. The mitigated TS δmit is our
estimate of the true TS.

Throughout, it is important to note that, given a sample size and a design, any TS uniquely maps to an ES. For example, for the

unpaired t test, ηtrue = ϕδtrue with ϕ =
√

n1+n2
n1n2

. Transformations for other inferential tests are well known (e.g., Ellis, 2010; or

succinctly in Footnote 4 of Verhagen & Wagenmakers, 2014). To define a prior for the TS, we propose a unit information prior on the ES
ηtrue: ηtrue ∼ N (0, 1). We can readily transform this prior to the scale of the TS:

(
δtrue

∣∣M+
)
∼ N

(
0, ϕ2), whereM+ indicates

any model under which the null hypothesis ηtrue = 0 is false. The prior might also be generalized to
(
δtrue

∣∣M+
)
∼ N

(
ϕµ, ϕ2σ2), to

either reduce the slightly assumptive nature of the unit information prior or to incorporate genuine prior knowledge.
The available data are n1 and n2 and the observed TS δobs of at least one experiment. Associated with δobs is an observed p-value

pobs = 2× T
(
−|δobs|

∣∣ ν). Below, we give the likelihood functions associated with each of the four behavioral models of publication
bias, under each of the two states of nature (H0 false or true).

M1: A no-bias model. SupposeM1: There is no publication bias. The probability of publishing, Ppub, is 1.

Case M1+: H0 false. p
(
δobs

∣∣M1+, η
true
)

= t’
(
δobs

∣∣ ηtrue, ν) , with true ES ηtrue.

Case M1−: H0 true. p
(
δobs

∣∣M1−, η
true
)

= t
(
δobs

∣∣ ν) , with ν degrees of freedom.

M2: An extreme-bias model. Suppose M2: Publication bias is extreme—publication only happens if significance is found. The
probability of publishing, Ppub, is a step function of pobs:

Ppub
(
pobs
)

=
{

0 if pobs ≥ α
1 otherwise

.

where pobs is a function of the observed TS δobs, as above, and α is conventionally set to .05. Associated with α is the critical TS δcrit,
which is the smallest TS (in absolute value) to be considered significant at level α (i.e., any TS under −δcrit or above δcrit would be
considered statistically significant).

Case M2+: H0 false.

p
(
δobs

∣∣M2+, η
true
)

=
{

0 if pobs ≥ α
1
B2
t’
(
δobs

∣∣ ηtrue, ν) otherwise
,

or the t’ distribution truncated to the significance region. Note that the denominator B2 can be computed without the need for expensive
numerical methods, using the direct calculation of the cumulative noncentral t distribution T ’:

B2 =
∫ −δcrit
−∞ t’

(
x
∣∣ ηtrue, ν) dx+

∫ +∞
δcrit

t’
(
x
∣∣ ηtrue, ν) dx

= T ’
(
−δcrit

∣∣ ηtrue, ν)+ 1− T ’
(
δcrit

∣∣ ηtrue, ν) .
Case M2−: H0 true.

p
(
δobs

∣∣M2−
)

=


0 if pobs ≥ α

t(δobs | ν)∫ −δcrit
−∞

t(x | ν)dx+
∫ +∞

δcrit
t(x | ν)dx

= 1
α
t
(
δobs

∣∣ ν) otherwise ,

that is, the t distribution truncated to the region that yields statistical significance.

M3: A constant-bias model inspired by Greenwald. Greenwald (1975) proposed a model of the research-publication process in
which a number of parameters characterize the various steps of publishing in psychology, such as the investigators’ probability of
reporting research and the editors’ probability of publishing manuscripts reporting significant or nonsignificant results. We simplify this
model by summarizing the probabilities in each step into one single constant probability of publishing nonsignificant results.

SupposeM3: Publication occurs with certainty if a significant effect is found, but also with some constant probability π if no significant
effect is found. The probability of publishing, Ppub, is

Ppub
(
pobs, π

)
=
{

π if pobs ≥ α
1 otherwise

.
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Case M3+: H0 false.

p
(
δobs

∣∣M3+, η
true, π

)
=
{

π 1
B3
t’
(
δobs

∣∣ ηtrue, ν) if pobs ≥ α
1
B3
t’
(
δobs

∣∣ ηtrue, ν) otherwise
,

where 0 ≤ π ≤ 1 with prior π ∼ U (0, 1), and

B3 = π
∫ δcrit
−δcrit t’

(
x
∣∣ ηtrue, ν) dx+

∫ +∞
δcrit

t’
(
x
∣∣ ηtrue, ν) dx+

∫ −δcrit
−∞ t’

(
x
∣∣ ηtrue, ν) dx

= 1− (1− π)
[
T ’
(
δcrit

∣∣ ηtrue, ν)− T ’
(
−δcrit

∣∣ ηtrue, ν)] .
Case M3−: H0 true.

p
(
δobs

∣∣M3−, π
)

=
{

π 1
A3
t
(
δobs

∣∣ ν) if pobs ≥ α
1
A3
t
(
δobs

∣∣ ν) otherwise
,

where A3 = π
∫ δcrit
−δcrit t (x | ν) dx+ 2

∫ +∞
δcrit

t (x | ν) dx = π (1− α) + α.

M4: An exponential-bias model inspired by Givens. In Givens et al. (1997), another approach is introduced to estimate and adjust
for publication bias, by partitioning the unit interval into segments so that a p-value from any given study falls into one of these regions.
Each interval region is assigned a corresponding probability of publication, with probabilities decreasing as the region departs from
significance. InM4, we capture this same concept with a probability of publishing that decreases exponentially as a function of the
difference between the observed p-value pobs and α. The rate of exponential decay as pobs departs from α is determined by a strictly
positive rate parameter λ. A-priori, we suppose λ ∼ Exp (5).

SupposeM4: Publication occurs with certainty if a significant effect is found, but also with some nonzero probability if no significant
effect is found.

Ppub
(
pobs, λ

)
=
{

e−λ(p
obs−α) if pobs ≥ α

1 otherwise
.

Case M4+: H0 false.

p
(
δobs

∣∣M4+, η
true, λ

)
=
{

e−λ(p
obs−α) 1

B4
t’
(
δobs

∣∣ ηtrue, ν) if pobs ≥ α
1
B4
t’
(
δobs

∣∣ ηtrue, ν) otherwise
,

where
B4 =

∫ δcrit
−δcrit e

−λ(p(x,ν)−α)t’
(
x
∣∣ ηtrue, ν) dx

+
∫ +∞
δcrit

t’
(
x
∣∣ ηtrue, ν) dx+

∫ −δcrit
−∞ t’

(
x
∣∣ ηtrue, ν) dx

=
∫ δcrit
−δcrit e

−λ(p(x,ν)−α)t’
(
x
∣∣ ηtrue, ν) dx

+
[
1− T ’

(
δcrit

∣∣ ηtrue, ν)]+ T ’
(
−δcrit

∣∣ ηtrue, ν) dx.
with p (x, ν) = 2× T (−|x| | ν), the p-value associated with a particular observation given ν degrees of freedom.

Case M4−: H0 true.

p
(
δobs

∣∣M4−, λ
)

=
{

e−λ(p
obs−α) 1

A4
t
(
δobs

∣∣ ν) if pobs ≥ α
1
A4
t
(
δobs

∣∣ ν) otherwise
,

where
A4 =

∫ δcrit
−δcrit e

−λ(p(x,ν)−α)t (x | ν) dx+ 2
∫ +∞
δcrit

t (x | ν) dx

=
∫ δcrit
−δcrit e

−λ(p(x,ν)−α)t (x | ν) dx+ α.

Bayesian inference details

Computation of Jeffreys weights. A standard Bayesian approach to model comparison is the Bayes factor (Jeffreys, 1961; Kass &
Raftery, 1995). Bayes factors summarize the evidence provided by the observed data in favor of one model over another, and implicitly
control for goodness-of-fit as well as model complexity. The Bayes factor B between two models is simply the ratio of Bayesian evidence,
also known as the marginal likelihood, for each model. The Bayesian evidence E is computed by integrating the likelihood over the prior
parameter space, so that the Bayes factor between two models,M1+ andM2−, denoted B(M1+ :M2−) is:

B(M1+ :M2−) = E1+

E2−
=
∫
p (x | θ1,M1+) p (θ1 |M1+) dθ1∫
p (x | θ2,M2−) p (θ2 |M2−) dθ2

where p (x | θ2,M2−) is the data-dependent likelihood forM2−, p (θ1 |M1+) is the prior distribution over the parameters ofM1+,
and the conditioning of the evidences and Bayes factor on the data x is implicit. In our case, the Bayes factors between these two
models is nontrivial but not prohibitive. If |δobs| < |δcrit|, B(M1+ :M2−) = +∞, because this is an impossible occurrence under
M2−. Otherwise,

B(M1+ :M2−) = α

∫
t’
(
δobs

∣∣ ηtrue, ν)N
(
ηtrue

∣∣ 0,√n) dηtrue
t (δobs | ν) .
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Note that the integral in the denominator disappears because modelM2− has no random parameters. The integral in the numerator can
be efficiently approximated with numerical methods such as Gaussian quadrature (Abramowitz, Stegun, et al., 1972).

The Bayes factor is the ratio of the posterior odds of one model to its prior odds, regardless of the actual value of the prior odds.
Because it is an odds ratio, it has a convenient and intuitive interpretation. If B(M1+ :M2−) is greater than 1, thenM1+ is more
strongly supported by the observed data thanM2−. Similarly, if B(M1+ :M2−) is less than 1, thenM2− is more strongly supported
by the observed data than M1+. Intuitively, it quantifies how much one should update one’s prior beliefs about the models under
consideration, given evidence from the observed data. The Bayes factor also operates nicely on a continuum, as opposed to classical
NHST in which a p value is judged against a single arbitrary cut-off criterion α. Jeffreys (1961) suggests some interpretative boundaries,
with values of 3, 10, and 30 corresponding to strengths of evidence that are “barely worth a mention,” “substantial,” and “strong,”
respectively.

Jeffreys weights are a multi-alternative extension of Bayes factors, taking the Bayesian evidence for each model and normalizing by
the sum of evidences over all models under consideration (Vandekerckhove, Matzke, & Wagenmakers, in press). For our eight models, if
the evidence forMk is denoted Ek, then the corresponding Jeffreys weight Jk is:

Jk = Ek∑8
j=1 Ej

.

Jeffreys weights can be multiplied with model priors to arrive at model posterior probabilities:

P (Mk |x) = JkP (Mk)∑8
j=1 JjP (Mj)

.

Model priors. We need to define a prior distribution over the eight possible modelsM1+, . . . ,M4−. In selecting our prior over models,
we followed three main desiderata. First, we hold that observing a single significant TS should not allow us to differentiate between
a no-bias model and an extreme-bias model with the same true effect size. Given that B(M1− :M2−) = α, we decide that the
prior for these models must reflect that ratio, so that P (M1−) = P (M2−) /α. Not scaling P (M2−) by at least 1/α would cause a
single significant observation to lead us to conclude that publication bias occurred.6 Additionally, we do not want the prior to prefer
either of the two states of nature: ∀i : p (Mi−) = p (Mi+). Finally, we want the prior to express prior equiprobability among all the
biasing mechanisms (not including the no-bias mechanism). Taking all these desiderata together, the prior over models is defined as
(20, 20, 1, 1, 1, 1, 1, 1) /46, and this is the prior pictured in Figures 4, 5, and 6.

Aggregation of information across studies. Given multiple independent studies s, each with a unique observed TS δobss , the
aggregated posterior distribution of δmit is obtained by first applying Bayes’ theorem, then implementing the independence assumption,
and then marginalizing over models:

p
(
δmit

∣∣∣ {δobss }S
1

)
∝ p

(
δmit

)
p
({
δobss
}S

1

∣∣∣ δmit)
∝ p

(
δmit

)∏S

s=1 p
(
δobss

∣∣ δmit)
∝ p

(
δmit

)∏S

s=1

∑
M p

(
δobss

∣∣ δmit,M)P (M ∣∣∣ {δobss }S
1

)
,

and finally, computing the normalizing constant, so that

p
(
δmit

∣∣∣ {δobss }S
1

)
=

p
(
δmit

)∏S

s=1

∑
M p

(
δobss

∣∣ δmit,M)P (M ∣∣∣ {δobss }S
1

)
∫∞
−∞ p (x)

∏S

s=1

∑
M p

(
δobss

∣∣x,M)P (M|{δobss }S
1

)
dx
. [1]

In cases where the independence assumption is violated or not desired, a correlated error structure can instead be explicitly modeled,

so that the effect size factor in the likelihood function becomes N
({
ϕsδ

obs
s

}S
1

∣∣∣ {ϕsδmit}S1 ,Σ) , with Σ ∈ RS×S . Unfortunately, the

evaluation of the associated posterior distribution would require the repeated computation of an integral over the space of all covariance
matrices, which is currently prohibitively expensive.

6A reviewer remarked that 20:1 prior odds (if α = .05) in favor of a no-bias model seems excessive given that we know bias for significant results to be widespread. Our argument for this model prior is
admittedly subjective. We elicited our prior starting from the assumption that a single significant observation should not be discriminating between the bias and no-bias models.
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