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Abstract

We revisit a transfer-of-training study and analyze its
data using a cognitive modeling approach. Fitting a
diffusion model to participant behavior over sessions al-
lows conclusions as to the underlying causes of behav-
ioral changes—be they changes in cognitive strategies,
adaptation to the paradigm, increasing familiarity with
the stimuli, or speed of information processing. Our dif-
fusion model analysis revealed that participants simul-
taneously adapt speed-accuracy trade-off, increase their
non-decisional response speed, and increase their speed
of information processing. All three of these adaptations
transferred to a similar, non-trained outcome task.

Keywords: transfer of training; diffusion model; cog-
nitive psychometrics

Introduction

As a research topic, working memory (WM) training
has grown in both interest and controversy in recent
years (e.g., Jaeggi, Buschkuehl, Shah, & Jonides, 2014;
Morrison & Chein, 2011; Oberauer, Süß, Wilhelm, &
Wittman, 2003; Rode, Robson, Purviance, Geary, &
Mayr, 2014). The ideal goal of WM training is to im-
prove the underlying cognitive process(es) that is (are)
shared across other non-trained tasks. It is assumed
that, if these basic underlying processes can be improved,
the improvement will not only be observed in the trained
task but will generalize to non-trained tasks that rely
at least partially on the trained cognitive ability (e.g.,
WM).
In the current study, we focus on the change-detection

paradigm (e.g., Luck & Vogel, 1997)—a WM task that
has been used for more than a century. In a typical
example of this paradigm, the participant is briefly pre-
sented with an array and, following a short delay, is asked
to judge if a second presented stimulus array is identical
to the first or not. Despite the prevalence of the change-
detection paradigm in WM literature, the effect of train-
ing on task performance—and especially on transfer task
performance—has not been investigated thoroughly (for
a list of various possible reasons, see Buschkuehl, Jaeggi,
Mueller, Shah, & Jonides, under review). Moreover, it
has been argued that performance in the change detec-
tion paradigm is relatively fixed (Rouder et al., 2008;
Zhang & Luck, 2011).
While measurement in the WM literature has tradi-

tionally focused on measures of accuracy, speed, and/or

capacity, some researchers have successfully applied cog-
nitive models to WM tasks (e.g., van Vugt & Jha, 2011).
We favor such a modeling approach because, while tradi-
tional analyses can sometimes provide interesting conclu-
sions, they lack the ability to distinguish between qual-
itatively different sources of variability in the way that
cognitive process models do. For example, if in a train-
ing paradigm participants respond more quickly in the
last session than the first, this may be because they be-
came more adept at processing the information needed
for the task, but they might also have become more ef-
ficient at the perceptual or motor component of the re-
sponse process, or they may have cognitively adapted
to the task and act with less caution (either by shifting
criterion or a change in speed-accuracy tradeoff). This
lack of interpretability of simple summary statistics is
an issue in and of itself, and further, averaging artefacts
can produce inferential errors and/or biased estimates
(Heathcote, Brown, & Mewhort, 2000; see also Clark,
1973). Thus, we believe generating a model to describe
the underlying processes of WM tasks is especially im-
portant: not only does it provide a novel way of inter-
preting WM training and transfer, but it will addition-
ally allow us to make stronger and more concrete claims
as to the effect and efficacy of WM training tasks on

cognitive processes, which might allow us to make pre-
dictions about near and far transfer depending on which
cognitive process(es) improved during training. In this
paper, we present a reinterpretation of WM training and
transfer data in the context of a cognitive model, as a
proof of concept that cognitive modeling is a useful tool
in the study of WM tasks, especially in relation to train-
ing and transfer.

Data

We will revisit data by Buschkuehl, Jaeggi, Mueller,
Shah, and Jonides (2014). Here we describe only the
subset of data that we will use. Other measures are de-
scribed in Buschkuehl et al. (2014).

Participants

A total of 40 participants were recruited for the study
from two university communities, and were randomly as-
signed to one of two interventions. Six participants were
excluded from the analyses due to either irregularites in



their training schedules (if they failed to complete all 10
training sessions within the 14 day period), or for failing
to complete all of the pre- and post-test tasks, leaving
a total of 17 participants in each of the two training
groups.

Procedure and tasks

Participants were tested on the two criterion tasks
(“easy” and “hard”) and then randomly assigned to ei-
ther the easy or hard training group (test and training
tasks are described below). The first session of train-
ing was completed in the laboratory in order to give
participants the opportunity to ask any questions they
might have about the training task or the procedure.
The training program was then installed on the personal
computers of the participants, and the remainder of the
training took place on those computers. In order to en-
sure compliance, participants were required to send the
training data generated after each session via email to
the laboratory. Participants were asked to complete ten
training sessions (no more than one per day) within 14
days. Following the training period, participants were
tested again in the laboratory on the criterion tasks in
order to evaluate the impact of the intervention.

Easy Criterion Task. Each trial of the easy crite-
rion task began with a fixation cross presented in the cen-
ter of the screen for 1,000ms. Then, an array of colored
squares (possible colors: blue, red, yellow, purple, green,
black, white) was presented on a screen with a dark grey
background for 250ms, immediately followed by a 200ms
blank screen. Next, a set of masks was displayed for
700ms, directly covering the colored square display loca-
tions. Each mask consisted of a colored striped square,
with each mask being newly generated at each trial from
the colors used within the colored squares of that trial.
Subsequently a 100ms blank screen was presented, and
then one of the squares from the initial array was pre-
sented again until a change or no-change judgement was
made by the participant. A new trial began 1,000ms
after the previous trial ended.

Participants were given task instructions through the
computer program and went through ten practice trials.
During the practice phase, the stimulus set size (i.e.,
the number of colored squares) was either two, four, or
six, and accuracy feedback was given. After the practice
trials, there were 150 test trials: 15 change trials and
15 no-change trials for each of the possible set sizes, 2,
4, 6, 8, and 10. The order of test trials was randomly
determined by the computer, and no feedback was given
on test trials.

Hard Criterion Task. The hard criterion task was
similar to the easy criterion task described above with
small alterations. Instead of colored squares, random
black shapes were used (identical to those in Jaeggi et
al., 2003, but black in color and smaller in size). The

stimulus array was presented for 500ms and followed by
a 1,000ms blank screen. The entire array was shown
again on the test portion of the trial, with the shape
to be judged indicated by a black circle. Participants
were asked to indicate if the encircled shape was the
same as it was in the initial array presentation. The
next trial began immediately after the participant made
a judgement.

Easy Training Task. The easy training task was
similar to the easy criterion task described above with
three main differences. First, no mask was presented.
Second, rather than only displaying the square to be
judged, the entire array of squares was redisplayed with
the square to be judged encircled. Third, feedback was
provided at the end of each trial. The additional smaller
alterations made included that the initial array was pre-
sented for 250ms followed by a 1,000ms blank screen,
which was followed by the test display lasting until the
participant responded.

Each training session consisted of 15 blocks of 20 trials.
Participants started with a set size of two in their first
training session. After each block, performance was eval-
uated and if accuracy was higher than 85%, the set size
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Figure 1: Example trials for each of the four tasks.
The easy and the hard criterion tasks differ in the type
of stimulus (color squares vs. shapes), the presence of
masks, and the number of items remaining in the test
display. The easy and hard training tasks differ only in
the the presence of masks, the number of items remain-
ing, and the presence of feedback. Note that the hard
training task and easy criterion task are the same.
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Figure 2: A graphical representation of the Wiener dif-
fusion model. The accumulation process begins at evi-
dence value αβ and unfolds with an average increase of δ
per second until a boundary at α or 0 is reached. τ is an
additive time constant for nondecisional processes. The
shaded area is the model-predicted probability density
function over response and response time, W(α, β, τ, δ).

was increased by one; similarly, if the accuracy dropped
below 70%, set size was reduced by one. Otherwise set
size remained unchanged. The set size of the first block
of subsequent training sessions was determined by sub-
tracting two from the set size of the last block in the
previous training session (as ‘warm-up time’). The pro-
gram had a maximum set size of 20, but no participants
reached a set size higher than 16.

Hard Training Task. The hard training task was
identical to the easy criterion task described above. Thus
it differed from the easy training task in that there was
no feedback provided, there was a mask presented, and
only one of the squares was shown in the test display (to
preclude any context or configuration effects).

Data preprocessing. We did minimal data prepro-
cessing. Beyond the data from excluded participants,
we discarded only data from trials in which the response
time was clearly too fast (less than 200ms) or too slow
to be a one-shot response process (more than 2000ms).

Diffusion model

Our modeling analysis uses an hierarchical diffusion
model for two-choice reaction times introduced by
Vandekerckhove, Tuerlinckx, and Lee (2011), which is
an extension of a model first described by Stone (1960).
In the diffusion model, it is assumed that participants

make task decisions through a process of sequential accu-
mulation of information, executing a response when suf-
ficient information is garnered. Figure 2 illustrates the
process. The parameters of interest are α, the amount
of information required before a decision is made (which
captures the speed-accuracy trade-off); β, the a-priori
bias that a participant might have towards one or the
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Figure 3: A graphical representation of our exploratory
hierarchical diffusion model. Parameters µ indicate the
set-size-specific population mean of each parameter; pa-
rameters γ indicate the effect of session on each parame-
ter; and parameters σ indicate the between-person vari-
ability in each parameter. Node ykipt is the t

th choice re-
sponse time data point for participant p in session i with
set size k. For example, the supposed distribution of δkip
is normal with mean µδ

k + γδ
i and standard deviation σδ,

and the distribution of ykipt is the Wiener distribution
with unit diffusion coefficient. The figure displays only
part of the model, which was fit to the training and cri-
terion behavior simultaneously, with the same set-size
parameters but freely estimated session offsets.

other response; τ , the non-decision time including time
for encoding the stimulus and executing the motor re-
sponse; and δ, the “drift rate” or rate of information
accumulation within a trial. Importantly, this parame-
terization gives us a representation of skill at the task
(in the form of the drift rate variable, δ), while simul-
taneously accounting for non-skill based changes in task
performance and speed.

In our model, we will decompose the observed param-
eters into constituent components. For all parameters,
we will assume a fixed effect of set size, so that each set
size has its own mean value for each parameter (e.g., µτ

4

is the average nondecision time for trials with set size
4). We additionally assume an average fixed offset for

each parameter in each session (e.g., γβ
5

is the average
offset in a-priori bias β in session 5), relative to the first



training session (so γ1 = 0 for all parameters). Finally,
we assume a random participant effect, so that each par-
ticipant gets an additional term to indicate their unique
level of each parameter relative to the group mean. This
term will be a draw from a normal distribution with
mean 0. Taken together, the model is fully described by
the set of structural equations

θkip = µθ
k + γθ

i + εθp

εθp ∼ N
(

0, σθ
)

,

for each diffusion model parameter θ, and the likelihood
function ykipt ∼ W(α, β, τ, δ). The likelihood function is
defined as the first passage time distribution of a Wiener
process with constant boundaries.
We fit this model simultaneously to the training data

and the criterion tasks, allowing for different session off-
sets for each parameter in each of the criterion sessions.
We implemented the model in an hierarchical Bayesian

framework, as in Vandekerckhove et al. (2011). Figure 3
gives a graphical model representation of the model we
used. In this graph, variables are represented by nodes.
Downstream (i.e., “receiving”) nodes are probabilisti-
cally dependent on upstream nodes, shaded nodes are
observed variables, and unshaded nodes unobserved vari-
ables. Plates indicate ‘loops’ over sets of similar nodes.
We drew eight chains of 1000 samples from the joint

posterior distribution of all parameters of the hierarchi-
cal diffusion model using a freely available extension of
the Bayesian computation program JAGS (Wabersich &
Vandekerckhove, 2014). Convergence of the Monte Carlo
chains was confirmed with the typical R̂ < 1.1 criterion.

Modeling results

Training

Posterior distributions of the parameters are displayed
in Figure 4. The left panels in the figure show the pro-
gression of the parameter over sessions. The first session
is used as a reference point. The pattern of behavior
is clear for each parameter. Over sessions, boundary
separation α decreases as participants begin to trade ac-
curacy for speed. The a-priori bias level β stays con-
stant and around 0.5, as induced by the experimental
paradigm. Nondecision time τ steadily decreases over
sessions. Drift rate δ shows a slight decrease going from
the first to the second session (presumably due to the
change in context from the laboratory to the partici-
pant’s home) but rapidly stabilizes. A slight upward
trend is visible.
In a second analysis, the increase of drift rate over

sessions two through ten was modeled as a linear func-
tion: δpik = µδ

k + ζ(i − 6) + εδp, with set-size mean µδ
k,

person-specific error term εδp, regression weight ζ, and i

the session number. In this model, the posterior of re-
gression weight p(ζ < 0|y) ≈ 0.007, indicating a positive

trend with mean a posteriori estimate (MAPE) ζ̂ ≈ .011.

We conducted a third analysis in which we took into
account the difference between the “hard training” and
“easy training” participant groups. The results were
qualitatively similar between the two groups, with the
exception that the learning effect on drift rate was
smaller in the “easy training” group (p(ζeasy < 0|y) ≈

0.071, MAPE ζ̂easy ≈ .010) than in the “hard training”

group (p(ζhard < 0|y) ≈ 0.008, MAPE ζ̂hard ≈ .015).
The right panels in Figure 4 show the mean of each

parameter per set size. These results are not important
to our discussion, save for knowing that the parameters
behave in expected ways (most stay relatively constant,
except for drift rate, which decreases as expected with
increasing task difficulty), and underscoring that set size
was taken into account in our analyses.
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Figure 4: Right panels: Posterior distributions of the
population means µk of the four diffusion model param-
eters as a function of set size k. Posterior uncertainty,
indicated by the 99% credibility interval, is larger for the
highest set sizes because few participants reached that
level of difficulty. The panels show little systematic ef-
fects, except for a marked decrease in drift rate from
set size 2 to 5. This shows that task difficulty increases
with set size, but levels off around 5. Left panels: Pos-
terior distributions of the session-specific offset terms γi
as a function of sessions i. The leftmost marker is the
first session, which is singled out because it was the only
training session held in the lab. Ignoring the first session,
we observe a decrease in boundary separation α and in
nondecision time τ , and a slight increase in drift rate δ.
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Figure 5: Diffusion model parameter estimates, with
99% credibility intervals, from the transfer tasks. Ses-
sion is given on the horizontal axes. Circles represent
the easy criterion task; Squares represent the hard cri-
terion task. Top left: αs are seen to start above the refer-
ence level in the pre-training test and to end below it in
the post-training test. Top right: βs start slightly above
the reference level in the pre-training for the easy crite-
rion task and below it for the hard criterion task, with
the former decreasing and the latter stable. Bottom left:
τs start level with the reference point but decreases
markedly after training. Bottom right: δ for the easy
criterion task starts below the reference level in the pre-
training test and ends above it in the post-training test.
This is expected because this task is very similar to the
training task. Interestingly, for the hard criterion task—
which is less similar—δ increases after training as well,
indicating transfer of training.

Transfer

Figures 5 and 6 show similar results for the criterion
tasks. When we compare the pre- and post-test data for
the easy (circles) and hard (diamonds) criterion tasks,
we find the same changes in boundary separation α and
non-decision time τ . Additionally, we also see a stronger
increase in drift rate δ. This is particularly interest-
ing given that δ is most readily interpreted as a higher-
level “ability” (e.g., Vandekerckhove, Verheyen, & Tuer-
linckx, 2010; Pe, Vandekerckhove, & Kuppens, 2013)
which should be less sensitive to specific properties of
the task.

Discussion

Two findings are of note. First, the diffusion model
analysis indicates that the improvement seen during the
training phase of the experiment is a multicomponen-
tial effect: The practice effect consists of simultanous
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Figure 6: Posterior distributions of effect size estimates
corresponding to the training effects in Fig. 5. The Ses-
sion main effect (ME) is the parameter in the second
session minus that in the first. The Task ME is the per-
formance in the easy task minus the hard. All effect sizes
are expressed in the parameter’s original units. Circles
represent mean effect size and thick and thin bars the
95% and 99% credibility intervals, respectively. Consis-
tent learning effects are seen in caution α, nondecision
time τ and drift rate δ, while bias β is the most stable
parameter. An interaction effect indicates that the abil-
ity parameter δ increases more for the easy transfer task
than for the hard transfer task (which is less similar to
the training tasks).

changes in cognitive strategy (the amount of information
required to make a decision), motor and encoding time
(nondecision time), and—to a lesser degree—task abil-
ity (drift rate). Given that drift rate has been associated
with fluid intelligence (Ratcliff, Schmiedek, & McKoon,
2008; van Ravenzwaaij, Brown, & Wagenmakers, 2011),
this strikes us as the most practically significant find-
ing. This finding is also in line with previous results
from cognitive models of practice and learning (Dutilh,
Vandekerckhove, Tuerlinckx, & Wagenmakers, 2009).
More importantly, the transfer of training effect is

seen in the parameters of the diffusion model. On the
one hand, we see changes in the boundary separation
parameter and the non-decision time. These two pa-
rameters are typically interpreted as cognitive strategy
(speed/accuracy tradeoff), and speed of stimulus prepro-
cessing and motor response, respectively. In the latter
parameter, we expect to see transfer of training to closely
related tasks (i.e., tasks that rely on similar stimulus
configurations that require similar perceptual encoding),
with diminishing effect the more unrelated the tasks be-
come. On the other hand, we also observe an increase
in drift rate parameter from the first testing occasion to
the last. This parameter is commonly interpreted as a
higher level cognitive ability, more distant from superfi-
cial task properties. Hence, training in this parameter is
expected to transfer more easily to “distant” tasks (i.e.,



tasks that rely on different stimulus configurations), rel-
ative to the other parameters of the diffusion model. In
future studies, we will explicitly manipulate the distance
between tasks to test this hypothesis.

Finally, we should point out that this type of conclu-
sion was made possible through the use of a cognitive
psychometric model. Future work will include the ap-
plication of a more sophisticated cognitive-psychometric
model in which individual differences in training effect
size will be used to forecast transfer effect size.
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