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Abstract

Decision making between several alternatives is thought to involve the gradual accumulation of evidence in favor of each
available choice. This process is profoundly variable even for nominally identical stimuli, yet the neuro-cognitive substrates
that determine the magnitude of this variability are poorly understood. Here, we demonstrate that arousal state is a
powerful determinant of variability in perceptual decision making. We measured pupil size, a highly sensitive index of
arousal, while human subjects performed a motion-discrimination task, and decomposed task behavior into latent decision
making parameters using an established computational model of the decision process. In direct contrast to previous
theoretical accounts specifying a role for arousal in several discrete aspects of decision making, we found that pupil
diameter was uniquely related to a model parameter representing variability in the rate of decision evidence accumulation:
Periods of increased pupil size, reflecting heightened arousal, were characterized by greater variability in accumulation rate.
Pupil diameter also correlated trial-by-trial with specific patterns of behavior that collectively are diagnostic of changing
accumulation rate variability, and explained substantial individual differences in this computational quantity. These findings
provide a uniquely clear account of how arousal state impacts decision making, and may point to a relationship between
pupil-linked neuromodulation and behavioral variability. They also pave the way for future studies aimed at augmenting the
precision with which people make decisions.
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Introduction

Decisions that must be made between two or more alternatives

are faced throughout everyday life. Such decisions are thought to

involve a sequential process whereby evidence is gradually

accumulated in favor of each choice option, until a threshold

level corresponding to a specific choice is reached [1–4].

Adjustments to discrete elements of this accumulation-to-bound

process can be strategically deployed to optimize decision making

in a given context [1,5–7]. Yet even when the strategic demands of

a task are held constant, the timing and accuracy of decisions are

profoundly variable. While recent research has worked to

characterize the neural correlates of trial-to-trial variability in

decision making [8–14], very little is known about the neuro-

cognitive processes that actually determine the magnitude of this

variability. Characterizing sources of such variability is thus a key

challenge for the cognitive neuroscience of decision making.

Here, we focus on changes in arousal state as a primary source

of variability in perceptual decision making. Arousal broadly refers

to an organism’s state of responsivity to external stimulation [15],

and is a principal determinant of the manner in which organisms

engage with their environments. Intermediate levels of arousal

promote focused engagement in the task at hand, whereas

departures from this ‘optimal’ arousal state can lead to drowsiness

and demotivated behavior at one extreme, or distractibility at the

other extreme [16–19]. Thus arousal exhibits an ‘inverted-U’

relationship with task engagement, suggesting that the capacity for

optimal decision making may decline at overly low or high arousal

levels. Arousal state is regulated by the tonic activity of the brain’s

neuromodulatory systems [16,20–22], which exert potent influ-

ence over the dynamics of neural activity (e.g. by modulating the

responsivity or ‘gain’ of neural networks [16,23–25]). Spontane-

ous, task-independent fluctuations in neuromodulatory tone have

been strongly associated with decreased sensitivity to task-relevant

stimuli and with more variable and erratic responding in ways that

mirror the non-linear relationship between arousal state and task

engagement [16,25,26].

Several mechanistically explicit accounts have attempted to link

changes in arousal and their neuromodulatory foundations to

overt behavioral sequelae in a number of specific contexts ([e.g.

simple target-detection; [16,24,25,27]). However, the relationship

between arousal state and the basic computations underlying

accumulation-to-bound decision making is still poorly understood.

Arousal and neuromodulation might plausibly be linked to several
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aspects of the decision making process including stimulus encoding

[28], accumulation of decision evidence [29,30], the threshold

level of evidence required for decision commitment [25,31,32],

and/or the time devoted to response execution [cf. 16,25].

However, no empirical studies to date have parsed how

spontaneous fluctuations in arousal state or the attendant changes

in neuromodulation affect such computationally-tractable aspects

of accumulation-to-bound decision making.

Here, we examined how computational parameters of percep-

tual decision making are linked to slow, stimulus-independent

fluctuations in pupil diameter. Pupil diameter provides a highly

sensitive index of arousal state in conditions of constant luminance

[33], and may indirectly reflect changes in the activity of

subcortical neuromodulatory systems and their associated effects

on neural processing [16,23,34,35]. Indeed, much converging

evidence indicates that ‘baseline’ pupil diameter correlates with

specific behavioral metrics that are linked to tonic neuromodulator

release, particularly with respect to the locus coeruleus-noradren-

ergic system [23,36–40].

We measured pupil size while subjects performed a canonical

perceptual decision making task involving motion discrimination,

and decomposed observable behavior on this task into latent

decision making parameters according to a prominent model of

the decision process [41–45]. We found that changes in baseline

pupil diameter were linked to between-trial variability in the rate

of decision evidence accumulation with remarkable specificity:

Periods of increased pupil diameter, indicative of heightened

arousal, were characterised by greater variability in evidence

accumulation rate, and did not relate to any other component of

decision making. Pupil size also correlated with trial-by-trial task

behavior in a manner specifically predicted of an index of

variability in accumulation rate, and accounted for significant

individual differences in this computational quantity. These

findings provide a uniquely clear account of how arousal state

impacts decision making, and may point to a strong relationship

between tonic neuromodulation and behavioral variability.

Results

Twenty-six individuals performed a speeded response time (RT)

version of a widely-used perceptual decision making paradigm, the

random dot motion (RDM) task [46,47]. The present version of

the RDM involved two-alternative forced choice decisions about

whether the dominant direction of motion of a cloud of moving

dots was leftward or rightward (Figure 1A).

We sought to explore the relationship between pupil-linked

arousal state and the computational foundations of the decision

making process. Arousal is related to task engagement in a

quadratic fashion [16–19], and where an individual resides on this

‘inverted-U’ curve is partly a function of task difficulty [48]. We

thus attempted to limit individual differences in RDM discrimi-

nation difficulty, such that endogenous shifts in arousal had

equivalent effects on task performance across our sample. To this

end, subject-specific psychometric functions were estimated during

an initial testing phase and the stimulus discriminability corre-

sponding to 85% response accuracy was used for the remainder of

the experiment (see Materials and Methods). During the main task

phase, RTs on trials characterised by correct decisions

(M = 723 ms, SD = 115 ms) were faster than RTs on incorrect

trials (M = 807 ms, SD = 151 ms; paired-samples t-test, t25 = 6.78,

p,0.0001).

Pupil diameter is uniquely related to between-trial
variability in the rate of evidence accumulation

In order to address our central question of how pupil-linked

arousal state affects specific aspects of decision making, we focused

on a baseline pupil diameter measure defined as the mean pupil

diameter during the 1 s preceding motion onset on each trial. This

measurement period is consistent with previous studies that have

leveraged pupillometry to interrogate tonic arousal state [36–38],

and yields a baseline measure that is distinct from the phasic,

event-related pupil dilations that often follow salient task events

(Figure 1B).

We explored the relationship between this baseline pupil

diameter measure and latent aspects of the decision process by

fitting the drift diffusion model (DDM) to subjects’ behavioral

data. The DDM is a prominent mathematical model of simple

two-choice decisions like those faced on the RDM task, and can

parsimoniously account for full correct and error RT distributions

across a diverse array of task settings [3,41–44]. The model

assumes that noisy sensory evidence is accumulated over time until

one of two opposing boundaries is reached, at which point a

decision is made in favor of the corresponding choice (Figure 2A).

Core model parameters include the rate of evidence accumulation

(drift rate) v, response boundary separation a, and non-decision

time t. A central appeal of the DDM lies in the relatively clear

mappings of these core parameters onto distinct psychological

processes, such as the speed of information accumulation (v) and

response caution (a). The full model also incorporates several

sources of between-trial variability – for example, drift rate v is

often assumed to vary across trials according to a normal

distribution with standard deviation g. Variability parameters like

g have proved necessary to explain specific aspects of the

relationship between correct and error RT distributions [42],

though little is known about what psychophysiological states might

determine the magnitude of these parameters.

We fit the DDM to subjects’ observed behavioral data via

hierarchical Bayesian parameter estimation [49,50]. This ap-

proach assumes that single-subject model parameters are random-

ly drawn from group-level parameter distributions, and deduces

posterior probability densities for parameters at each hierarchical

Author Summary

Variability is a hallmark of how we make decisions
between different alternatives: Even when we are present-
ed with identical repetitions of a stimulus, the timing and
accuracy of our associated decisions vary dramatically.
Representations of variability or ‘noise’ have necessarily
been a prominent feature of how cognitive scientists
model the decision making process. However, very little is
known about the underlying neural processes or psycho-
physiological states that determine the magnitude of this
variability. In this study, we measured people’s pupil size
as an indicator of their physiological arousal state during
performance of a challenging motion-discrimination task,
and modelled decisions on this task using an established
computational model of the decision process in which
evidence gradually accumulates toward a response thresh-
old. We found that arousal state was tightly and uniquely
linked to a computational parameter that specifically
represents variability in the rate at which people accumu-
late evidence to inform their decisions: Larger pupil size,
both within- and between-individuals, corresponded to
greater variability in this critical aspect of decision making.
Our findings uncover a potent source of variability in how
people make decisions, and forge a new link between the
classical construct of arousal and modern theories of
decision making.

Arousal Determines Variability in Decision-Making
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level by fitting to the entire group of subjects simultaneously (see

Materials and Methods). Within this framework, the pooled group-

level data effectively constrain parameter estimates for any one

individual. In doing so, the hierarchical DDM confers a critical

advantage over non-hierarchical approaches in that it yields more

reliable parameter estimates when working with low trial numbers

per subject/condition [49,50]. In our case, trials for each subject

were categorized according to whether they were preceded by

high or low baseline pupil diameter, and the model was fit to RT

and accuracy data from both resulting bins. In accordance with

the exploratory nature of our research question, we let four key

model parameters vary across pupil bin: a, t, v and g (Table 1;

Figure 2B). The model fit the data from both pupil bins well

(Figure 2C; Figure S1).

We tested for group-level effects of pupil diameter bin on the

latent computations underying decision making behavior by

interrogating posterior effect distributions that were estimated by

the hierarchical model. These distributions were constructed to

represent the pupil-related change in the group-level mean of each

DDM parameter (see Materials and Methods). Analysis of the a, t
and v effect distributions suggested that pupil diameter had no

consistent relationship with any of these parameters: The

probability mass of their respective distributions was roughly

centred on zero (Figure 2D). By contrast, 96.7% of the mass of the

g effect distribution lay above zero (Figure 2D), indicating that the

g parameter tended to increase in magnitude with increasing pupil

diameter. Thus periods of tonically increased pupil size, equivalent

to a state of heightened arousal, were characterized by greater

between-trial variability in the rate of evidence accumulation

during perceptual decision making.

Notably, this group-level relationship between pupil diameter

and g was relatively weak in strength; under standard frequentist

statistical conventions, for example, a two-tailed hypothesis test

would only yield a ‘significant result’ if more than 97.5% of the

effect distribution was above zero. However, two considerations

relating to the relative lack of constraint imposed by this particular

hierarchical model should mitigate any concerns about the

veracity of the effect. First, DDM parameters representing

between-trial variability are difficult to reliably estimate at the

single-subject level, particularly with the relatively low trial counts

at our disposal. This issue can inflate the uncertainty associated

with a parameter estimate, and lead to diminished estimates of

effect reliability. Thus, some authors have tended to only estimate

g at the group level [50,51]. Accordingly, we found that the pupil/

g effect was much more reliable when we took this approach

(99.6% of the posterior effect distribution above zero; Figure S2).

Critically, point estimates of the change in g across pupil bins (i.e.

the means of the effect distributions) were similar for both models

whereas the uncertainty associated with these estimates (i.e. the

variance of each distribution) was markedly decreased in the

group-only g model, thus suggesting that the additional uncer-

tainty inherent in single-subject g estimation substantially dimin-

ished the estimated reliability of the reported effect.

A second point about the lack of constraint provided by our

primary model is that the exploratory approach of letting 4 model

parameters vary across pupil bins may have increased the

probability that some meaningful g-related change in behavior

was misattributed to any of the other three varying parameters,

which would in turn dilute the estimated strength of any pupil/g
effect. Indeed, examining the relationship in a more constrained

manner by only letting g vary across pupil bin yielded a much

more robust effect, with 99.8% of the estimated posterior effect

distribution lying above zero (Figure S3).

The results from these alternative hierarchical modelling

approaches should be viewed as complementary to our primary

analysis, and convergent upon the conclusion that the g parameter

of the DDM increases in magnitude with increasing baseline pupil

diameter. In addition, a non-hiearchical version of the primary

analysis that employed the same basic model constraints also

corroborated the specificity of this relationship (Figure S4; see

Materials and Methods).
A further method by which to verify the connection between

pupil-linked arousal state and drift rate variability lies in

interrogating the links between baseline pupil diameter and

patterns of overt behavior that are thought to derive from a

change in g. This approach, which we turn to next, is notably not

affected by any concerns about model constraints or the

Figure 1. Random dot motion task. A. Schematic of a single trial of
the random dot motion task. ‘Left’ or ‘right’ decisions were made with
spatially compatible button presses under a deadline of 1500 ms after
motion onset. Motion ceased upon response and was followed by an
isoluminant mask of stationary dots, and feedback was indicated by a
change in fixation cross color. B. Grand-average evoked pupil responses
locked to the time of the decision. Histogram indicates the distribution
of motion onset times relative to the subsequent response, after
pooling trials across all subjects. Time period marked ‘baseline’
indicates the window over which baseline pupil diameter was
calculated, in this case for trials characterized by the grand-mean
response time (dashed vertical line). The minimum response-to-
stimulus interval was 5 seconds; hence the prominent decision-related
pupil dilation had sufficient time to return to baseline levels before the
measurement period for baseline pupil diameter on the following trial.
Shaded regions indicate S.E.M.
doi:10.1371/journal.pcbi.1003854.g001

Arousal Determines Variability in Decision-Making
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framework for parameter estimation, and is not dependent on the

specific bin sizes employed in our model-based analyses.

Pupil-behavior relationships corroborate a link with
variability in accumulation rate

Increased drift rate variability in the DDM has two cardinal

effects on observable behavior. First, it leads to lower average

response accuracy: A wider drift rate distribution with greater

probability mass in its tails will produce a relatively higher

proportion of trials with negative drift rate, and thus the

probability across trials of the diffusion process terminating at

the incorrect decision bound will be increased (assuming that the

upper bound on the diffusion process represents the correct

choice). Second, higher g specifically increases the discrepancy

between average correct and error RTs, such that the latter are

lengthened with respect to the former [42]. This selective widening

of the gap between correct and error RTs again occurs because of

the shift in probability mass to the tails of the drift rate distribution

that comes with increased variability – at one extreme of the

distribution, this leads to a relative increase in the number of very

fast trials, very few of which are errors; at the other extreme, it

leads to a relative increase in the number of very slow trials, a

comparatively large proportion of which are errors.

Figure 2. Drift diffusion modelling reveals a specific relationship between pupil diameter and variability in evidence accumulation
rate. A. Schematic representation of the drift diffusion model (DDM). Noisy sensory evidence is accumulated over time from starting point z at mean
drift rate v, until one of two thresholds (separated by a) is reached and a decision is made. Non-decision-related processing time is accounted for by t.
Drift rate is normally distributed across trials with standard deviation g. Upper and lower panels show simulated RT distributions for correct and
incorrect decisions. B. Graphical representation of the hierarchical DDM that was fit to the observed behavioral data. Nodes receiving arrow
projections in the graph denote distributions that are parameterized by the parent nodes. Subscripts represent baseline pupil diameter bin i,
participant p, and trial j. The shaded node y indicates the observed bivariate accuracy and response time data. st = between-trial variability in t.
Starting point z was fixed at a/2 across p, i and j (not shown). C. Model predictions after hierarchical parameter estimation, illustrating the fit of the
model to the observed data sorted into two bins according to baseline pupil diameter. Negative distributions indicate error RTs. Histograms illustrate
observed data; overlaid lines show predictions. D. Bayesian posterior distributions representing the effect of pupil diameter bin (high – low) on
selected model parameters. The m notation refers to the estimated mean of the group-level distribution for each parameter. P denotes the mass of
the effect distribution that is above or below zero. Vertical red lines indicate distribution modes.
doi:10.1371/journal.pcbi.1003854.g002

Arousal Determines Variability in Decision-Making
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We tested whether these behavioral trends – that together are

diagnostic of an underlying change in drift rate variability – were

observable in the trial-by-trial relationships between pupil

diameter and task behavior in our data. Indeed, single-trial

within-subjects logistic regressions of response accuracy on

baseline pupil diameter (Equation 1, Materials & Methods) yielded

b coefficients (bAcc) that were reliably negative (t25 = 22.90,

p = 0.008; Figure 3A), thus establishing that accuracy decreased at

higher levels of pupil diameter (Figure 3C). In addition, within-

subjects linear regression models designed to test whether the

nature of the relationship between baseline pupil diameter and RT

depended on the accuracy of the current trial (Equation 2,

Materials & Methods) yielded b coefficients for the relevant

interaction term (bRT*) that were also reliably less than zero

(t25 = 22.08, p = 0.048; Figure 3B). The direction of this result

indicates, as expected, that the discrepancy between error and

correct RTs grew as pupil size increased (Figure 3D). Collectively,

these analyses highlight that pupil diameter was linked at the trial-
by-trial level to accuracy and RT in ways that are specifically

predicted of an index of between-trial variability in evidence

accumulation rate.

We were also able to demonstrate via a series of additional

control analyses that these pupil/behavior relationships could not

be explained by any effects of previous-trial accuracy, eye gaze

position or time-on-task on either behavior or baseline pupil

diameter (Equations 3 & 4, Materials & Methods; Figure S5;

Figure S6). The lack of influence of previous-trial accuracy is

particularly noteworthy as it contrasts with the findings of

prominent recent studies of the behavioral correlates of changes

in baseline pupil diameter [37,39], instead suggesting that the

baseline variation in our study was more likely driven by slow,

stimulus- and outcome-independent fluctuations in tonic arousal

state.

As described in the previous section, the reliability of single-

subject g parameter estimates should not be assumed prima facie
when the DDM is fit to low trial-count data, as was the case in our

study. The previously-calculated regression coefficients, which

index the direction and strength of the relationships between pupil

diameter and specific aspects of task behavior (bAcc, bRT*), provide

an avenue by which to explore whether the per-subject g estimates

do in fact account for pupil-linked variation in behavior in

meaningful, expected ways. To do so, we correlated these

regression coefficients, across subjects, with the degree of change

in drift rate variability from low to high pupil bins (Dg). As

expected, accuracy b coefficients were negatively correlated with

Dg (r = 20.54, p = 0.005; Figure 3E) such that subjects whose

accuracy decreased as a function of increasing pupil diameter also

tended to show particularly large pupil-linked increases in g.

Similarly, RT b coefficients were also negatively correlated with

Dg (r = 20.69, p = 0.0001; Figure 3F), indicating that subjects who

showed a large pupil-linked increase in the discrepancy between

correct/error RTs also tended to display large increases in g as

pupil size increased. These between-subjects correlational results

provide important evidence in support of the reliability of our

single-subject g parameter estimates.

In contrast to previous reports employing easy stimulus

detection tasks [36,38], we did not observe a reliable relationship

between baseline pupil diameter and RT variability (p.0.3 for

paired-samples t-tests on both correct- and error-trial RT

variability across high and low pupil bins; Figure 4A,B). Indeed,

in line with this empirical finding coupled with our model fits

identifying a robust link between pupil diameter and drift rate

variability, subsequent DDM simulations indicated that increased

g within a wide range of parameter values is also not reliably

associated with a change in RT variability (Figure 4C,D; see

Materials and Methods). How, then, can the present findings be

reconciled with previous research [36,38] that demonstrated a link

between pupil size and RT variability during easy detection tasks?

We employed a one-choice diffusion model [52] with high drift

rate (thus approximating a simple decision making task in which

stimulus detection is easy and errors do not occur) to simulate the

overt behavioral consequences of increased accumulation rate

variability in such settings (see Materials and Methods). Accord-

ingly, increased g under these conditions was found to invariably

correspond to increased RT variability (Figure 4E). Thus, the

effect of a change in g on RT variability appears to be dependent

on the nature of the current decision making context. Further-

more, these simulations reveal that previous findings [36,38] that

might initially be deemed incongruent with the present results are

in fact consistent with the notion that pupil-linked arousal state

reflects the level of variability in evidence accumulation rate.

Pupil diameter indexes individual differences in the
variability of evidence accumulation

Closer inspection of the pupillometric and model-based results

revealed considerable variation between individuals in each of the

considered measures. In a final analysis, we thus examined

whether variation across subjects in the magnitude of drift rate

variability during decision making could be partially explained by

individual differences in average pupil size. Consistent with this

intuition, baseline pupil diameter averaged over the entire task

was positively correlated with mean drift rate variability across

subjects (r = 0.43, p = 0.027; Figure 5). Notably, task-averaged

pupil diameter did not correlate with any other DDM parameter

(all p.0.1). Thus, in corroboration of the previously-reported

Table 1. Group-level hierarchical DDM parameter estimates.

EAP Posterior SD (6100)

Low Pupil High Pupil Low Pupil High Pupil

ma 0.108 0.109 0.414 0.412

mt 0.526 0.520 2.152 2.100

mv 0.204 0.201 1.311 1.306

mg 0.123 0.164 1.662 1.652

mst 0.077 0.851

EAP = expected a posteriori.
Posterior SD = standard deviation of marginal posterior.
doi:10.1371/journal.pcbi.1003854.t001

Arousal Determines Variability in Decision-Making
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within-subjects effects, individual differences in baseline pupil

diameter were specifically linked to variability in the rate of

evidence accumulation.

Discussion

Arousal state has long been known to affect the manner in

which organisms respond to stimulation from the environment

[17–19,22], and is closely regulated by the brain’s neuromodula-

tory systems [16,20,21]. The strong associations between arousal,

task-related behavior and neuromodulation have promoted

speculation that arousal state might affect several discrete aspects

of decision making involving the gradual accumulation of evidence

over time [16,25,28,31]. Here, we report several findings

demonstrating that task-independent shifts in arousal state, as

indexed by pupil diameter, are uniquely related to the amount of

trial-by-trial variability in evidence accumulation rate during

perceptual decision making: (i) periods of increased pupil diameter

were characterised by greater variability in accumulation rate, as

revealed by a prominent computational model of the decision

process [41–44,49]; (ii) pupil diameter correlated with specific

behavioral signatures that collectively are diagnostic of a change in

accumulate rate variability; and (iii) pupil diameter explained

individual differences in this computational quantity. Our findings

thus demonstrate that, far from exerting a variety of effects on

separable aspects of decision making, changes in pupil-linked

arousal state affect the decision process in a highly specific manner.

Trial-by-trial variability parameters were initially incorporated

into sequential sampling models of decision making like the DDM

because, without them, such models had difficulty accounting for

commonly observed differences between correct and error

response latencies [42]. However, in contrast to the four core

parameters of the DDM (starting point, accumulation rate,

response threshold, non-decision time), the psychophysiological

determinants of changes in these variability parameters have not

previously been identified. The present results are striking in that

they afford the clearest indication to date that an established

psychophysiological state determines the magnitude of between-

trial variability in accumulation rate. Specifically, they imply that

this model parameter reflects, at least in part, the impact of

fluctuations in arousal state on the decision process, such that its

magnitude increases in situations of tonically elevated arousal.

This finding forges an explicit link between accumulation rate

variability and a psychophysiological state that has long been

known to determine task engagement [16–19], and thereby lays

the foundation for an explanatory framework within which task-

related or between-individual differences in this model parameter

can now be interpreted. Furthermore, our results furnish new

predictions regarding experimental manipulations that should

specifically affect accumulation rate variability. We propose that

manipulating tonic arousal (e.g. via presentation of white noise;

[48]) during decision making could provide a fruitful line of future

inquiry.

Although previous reports have highlighted a relationship

between baseline pupil diameter and RT variability during easy

stimulus detection tasks [36,38], pupil diameter in the present

study was solely correlated with response accuracy and the

discrepancy between correct and error RTs. We were able to

Figure 3. Pupil diameter correlates with response accuracy and the discrepancy between correct and error RTs. A. Mean of b
coefficients from within-subjects logistic regressions of trial-by-trial response accuracy on baseline pupil diameter (Equation 1, Materials & Methods).
B. Mean bs for the interaction term of within-subjects linear regression models designed to explore the relationship between baseline pupil diameter
and RT (Equation 2, Materials & Methods). The effect illustrates the increased discrepancy between correct and error RTs as a function of increasing
pupil diameter. C,D. Response accuracy (C) and RT (D) sorted within-subjects by baseline pupil diameter into 10 equal-sized bins, illustrating the
predominantly linear nature of the relationships. E. The strength of the subject-specific relationship between pupil diameter and response accuracy
(bAcc) was correlated with the change in drift rate variability from low to high pupil bins (Dg). F. The strength of the relationship between pupil
diameter and the discrepancy between correct and error RTs (bRT*) was also correlated with Dg. Error bars = S.E.M. *** = p,0.001, ** = p,0.01, * = p,
0.05.
doi:10.1371/journal.pcbi.1003854.g003

Arousal Determines Variability in Decision-Making
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demonstrate that both sets of observations are in fact consistent

with the proposal that pupil-linked arousal state determines the

magnitude of variability in evidence accumulation rate during

decision making. Diffusion model simulations revealed that the

effect of a change in accumulation rate variability on observable

RT variability is in fact dependent on the difficulty of the decision

making task at hand. Under conditions of difficult stimulus

discrimination when the diffusing process is sufficiently variable to

frequently reach the incorrect response bound (as in the present

study), the main consequence of an increase in g is a further

decrease in response accuracy; however, the effect on RT

variability in this context is not always reliable. By contrast, in a

simpler decision making scenario characterized by high stimulus

discriminability and an absence of errors, a primary consequence

of higher g is a robust increase in RT variability. Thus we

leveraged model simulations to establish changing accumulation

rate variability as a plausible unifying mechanism that could

mediate different, context-dependent relationships between pupil-

linked arousal and overt decision making behavior.

The present results are also interesting in light of other recent

pupillometric studies that relate stimulus- or outcome-evoked pupil

dilation to latent aspects of the decision making process. For

example, two recent publications [29,32] suggest that the size of

the stimulus-evoked dilation response during challenging decision

making tasks scales positively with the amount of evidence

required to commit to a decision, which is represented in the

DDM by the response threshold parameter. Such findings contrast

clearly with our identification of a link between ‘baseline’, pre-

stimulus pupil size and variability in the rate of evidence

accumulation. Considered together, this emerging literature lends

Figure 4. Simulated effects of between-trial variability in evidence accumulation rate on RT variability. A,B. Observed RT standard
deviations in the low and high baseline pupil bins of our empirical study, for correct (A) and error (B) trials. Error bars = S.E.M. Although slight trends
toward increased RT variability with increasing baseline pupil diameter existed for both RT-types, neither effect was statistically significant (both p.
0.3). C. Heat map illustrating the effect of simulated changes in the g parameter of the DDM on correct-trial RT variability. Two conditions were
constructed in which g was independently varied over a large range. Each pixel of the heat map represents the condition-related difference in the
standard deviation of simulated correct RTs, averaged across 26 simulated subjects, for a specific pairwise comparison of g values (see Materials &
Methods) – hotter colors indicate greater RT variability in condition 1 compared to condition 2. Black bounds enclose regions of the two-dimensional
parameter space within which g was varied where the difference in RT variability was statistically significant at the group level (p,0.05, paired
samples t-test, uncorrected). Red dots indicate the position in parameter space of the difference in g between the low and high baseline pupil bins of
our empirical study, as estimated by the hierarchical DDM. D. Heat map illustrating the effect of simulated changes in the g parameter on error-trial
RT variability. Method and conventions are the same as in C. E. Heat map illustrating the effect of simulated changes in g on RT variability during a
simpler decision making task that is characterized by easy stimulus detection and an absence of errors [e.g. 36,38]. Method and conventions are the
same as in C and D, with the exception that behavior was simulated using a one-choice DDM with parameter sets devised from [51] (see Materials and
Methods). All pixels in heat map show statistically significant condition-related differences, with the exception of those forming the identity line.
doi:10.1371/journal.pcbi.1003854.g004
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renewed support to the long-held belief that changes in arousal

affect behavior in different ways that are defined by the temporal

scale over which they operate: slow tonic fluctuations in arousal

appear to parameterize specific aspects of the neurocognitive state

within which an upcoming decision will be made (present results;

see also [37,39]), whereas fast evoked changes in arousal appear to

modulate the decision process as it evolves during a trial [29,32].

This tonic/phasic distinction also has a clear neural basis in the

activity patterns of various neuromodulatory nuclei

[16,21,25,26,53].

Indeed, in light of potential links between pupil diameter and

neuromodulatory tone [16,23,34,35], our results identify tonic

neuromodulation as a plausible neurophysiological substrate for

changes in accumulation rate variability during decision making.

Several sources of evidence have recently implied a strong link

between catecholaminergic neuromodulation and across-trial

variability in single-cell neuronal activity [54,55]. Our findings

complement these reports by highlighting what may be a higher-

level manifestation of neuromodulatory effects on processing

variability, and in doing so reinforce the notion that neuromod-

ulator availability in cortex is likely an important determinant of

the precision with which sensory information is encoded and

leveraged to guide behavior.

What specific biophysical mechanism might mediate a pupil-

linked increase in accumulation rate variability? One candidate is

the effect of neuromodulators on the gain of neural activity

[16,23–25]. Neural gain acts to amplify neural communication,

such that excited neurons become even more active and inhibited

neurons become even less active under high gain states. Transient

increases in gain can be highly advantageous for behavior when

applied at the right time [16,27], but high gain can also propagate

the influence of noise across all levels of processing when applied

indiscriminately [16,25]. Tonically high neuromodulator release,

likely marked by periods of large pupil diameter in our study, is

equivalent to this type of indiscriminate increase in global neural

gain [23]. The heightened influence of noise that arises from

tonically high gain may naturally load onto between-trial

variability in accumulation rate in typical fits of the DDM to

behavioral data, which coheres well with the relationship we

observed between this parameter and pupil diameter.

The DDM also contains a parameter s that represents within-

trial variability in accumulation rate, and is another plausible

candidate parameter that might be affected by tonic changes in

neural gain. We did not directly examine whether this was the case

in our data because, in fits of the DDM to observed behavior, s
acts to scale all other model parameters across conditions and

subjects and hence is fixed at an arbitrary value [45]. Nonetheless,

our simulations indicate that increased s would result in faster
error compared to correct response times and hence would not be

sufficient to explain our observed relationships between pupil

diameter and behavior (Figure S7). Thus, two possibilities remain

that we do not currently arbitrate between. First, elevated arousal

and neural gain may increase between- and within-trial variability

in accumulation rate, and both effects interact to produce the

specific behavioral signatures that we observed at high levels of

pupil diameter. Alternatively, arousal state may be uniquely

related to the between-trial variability parameter. Although the

former prospect seems more intuitively likely given the global,

indiscriminate nature of tonically increased neural gain, the latter

has some precedent in classic psychological arousal theory.

Specifically, high arousal has been thought to invoke highly labile

attentional allocation at a global level, but coupled with highly

fixed attention at a local level [17,18]. In the context of the present

study, this global/local distinction could manifest in a more

variable decision process between trials, but without any additional

variability in processing within individual trials.

Lastly, although the primary consequence of increased accu-

mulation rate variability in our decision making context (i.e.

decreased response accuracy) is clearly maladaptive, heightened

processing variability likely holds certain adaptive advantages in

other settings. For example, in situations where the value of each

choice option fluctuates unpredictably, heightened neural noise

can drive exploration of the full range of alternatives and lead to a

revised, more accurate internal model of the environment [56].

Indeed, arousal state and neuromodulators are thought to play a

key role in mediating shifts in this so-called exploration/

exploitation trade-off [16,37,56]. Our findings suggest that

adjustments to evidence accumulation rate variability may reflect

a mechanism, at the level of the decision process, by which such a

trade-off is regulated.

Materials and Methods

Ethics statement
The study was approved by the ethics committee of the Leiden

University Cognitive Psychology department, and all protocols

were conducted in accordance with the Declaration of Helsinki.

All subjects provided written informed consent prior to taking

part.

Subjects
Twenty-six individuals [age range: 18–29; mean age: 22.56 SD

of 2.7 years; 22 female] participated in the study. All subjects had

normal or corrected-to-normal vision, no history of psychiatric

illness, and spoke fluent English. A further 7 individuals were

recruited but not fully tested after failing to reach an initial criterial

level of task performance (see below).

Behavioral protocol
We employed a speeded RT version of the random dot motion

(RDM) paradigm. During task performance, subjects were

instructed to maintain fixation at all times on a centrally presented

light-blue cross (occupying 0.36u of the visual angle) and decide

whether the dominant direction of motion of a cloud of moving

Figure 5. Pupil diameter explains individual differences in
evidence accumulation rate variability. Baseline pupil diameter
across the entire task correlated with mean drift rate variability across
both pupil bins (�gg). * = p,0.05.
doi:10.1371/journal.pcbi.1003854.g005
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dots was leftward or rightward. The directions were equiprobable

and randomly selected across trials. The dots were white with a

size of 363 pixels, moved within a circle of 5u diameter at a speed

of 5u/s and a density of 16.7 dots/degree2/s, and were presented

on a black background [6]. For the first three frames of a given

trial, all dots were located in random positions. For each of these

frames the dots were repositioned after two subsequent frames

(dots in frame 1 were repositioned in frame 4, those in frame 2

were repositioned in frame 5, etc.). For each dot, the new location

could be either random or determined by the direction of motion

on that trial. The probability with which each dot moved in this

pre-determined direction is defined as coherence: At a coherence

of 50%, each dot has a 50% probability of participating in the

motion signal, every third frame.

All stimuli were presented via the Psychophysics Toolbox

Version 3.0.8 [57,58] for Matlab. A 47 cm-wide LCD monitor

was employed that operated at 60 Hz and a resolution of

168061050 pixels. Subjects were seated 60 cm from the monitor

with their heads supported by a chinrest to ensure constant

viewing distance and position throughout task performance.

Testing was conducted under moderate levels of ambient light

(,18 cd/m2).

Subjects were instructed to perform the task ‘as quickly and as

accurately as possible’, and indicated their response on a given

trial by pressing one of two spatially compatible keyboard keys

(‘Ctrl’ right or left) with their right or left index finger. Upon

response execution, the moving dots were replaced with an

isoluminant mask of stationary dots that were randomly distrib-

uted within the aperture of the 5u circle and displayed until the

start of the following trial. In addition, the colour of the fixation

cross changed for 700 ms post-response according to the accuracy

of that response: green if correct, light-red if incorrect. All fixation

cross colours were selected from the Teufel colours [59] in order to

approximate isoluminance throughout motion discrimination,

feedback and inter-stimulus interval. Lexical feedback was

provided in plain red font when responses were quicker than

100 ms post-stimulus onset or when a response had not been made

after 1,500 ms (‘‘too fast’’ and ‘‘too slow’’, respectively), and these

trials were not included in any analysis. The response-to-stimulus

interval (RSI), including feedback duration, was drawn from a

uniform distribution with a range of 5 to 6.5 s – pilot testing

revealed that this extended RSI was sufficient to allow evoked

pupil responses to return to baseline levels before measurement of

baseline pupil diameter on the subsequent trial (see Figure 1B).

The RSI distribution during initial practice blocks was shortened

to respective bounds of 1.6 s and 3.1 s in order to minimize the

total length of the testing session.

After receiving initial automated task instructions, subjects

completed a practice block of 40 trials at 50% dot coherence. If an

accuracy level of 70% was not achieved, they were required to

repeat the practice block until this threshold level of task

performance was attained. In such circumstances, a verbal

instruction was given to slow down and allow more time to

process the stimulus. Subjects who failed to achieve the 70%

accuracy cut-off after 3 practice blocks were not tested further and

were excluded from the study (n = 3). Even if the criterion level of

accuracy was reached, subjects were afforded the opportunity to

perform another practice block if they wished. An average of

1.660.8 practice blocks were performed by subjects who

progressed to the next phase of testing.

In order to match the difficulty of the RDM discrimination

across subjects, the practice blocks were followed by a block of 200

trials of randomly interleaved dot coherences (0, 10, 20, 40 or 80%

coherence, 40 trials each). We fit the proportional-rate diffusion

model to the mean RT and accuracy data yielded therein using a

maximum likelihood procedure [6,60]. The proportional-rate

model is a simple, low-parameter version of the diffusion model

that can be used to quickly estimate individual subjects’

psychometric and chronometric functions [60]. For each partic-

ipant, the dot coherence corresponding to 85% accuracy was

interpolated from their model-estimated psychometric curve and

used in all remaining experimental blocks. Mean accuracy across

remaining trials was marginally but significantly lower than this

target level (M = 81.9, SD = 5.5%; one-sample t-test, t25 = 22.83,

p = 0.009), likely due to slight misestimation of the true psycho-

metric functions. Nonetheless, this procedure appeared to fulfil its

function of limiting between-subjects variance in experienced task

difficulty. Notably, subject-specific coherence level did not

correlate significantly with mean accuracy, drift rate variability

or baseline pupil diameter across individuals (all p.0.1), suggest-

ing that this difficulty calibration process was not a primary

determinant of any residual between-subjects variance in task

performance and/or arousal state. The performance of 4 subjects

on this preliminary block was too poor for estimation of a reliable

psychometric function (mean estimated dot coherence for 85%

accuracy: 85.3617.5%). These subjects were not tested further

and were excluded from all analyses.

All remaining subjects (n = 26) were then administered 500 trials

of the RDM task, broken into 5 blocks of 100 trials. Each block

began with presentation of the fixation cross and a stationary mask

of dots for 10 s, allowing pupil size to stabilise before onset of the

first trial. Mean block duration was 10.960.2 minutes. Subjects

were allowed short rest periods between blocks, at the end of

which they were reminded to maintain fixation during the

following block and perform the task as quickly and accurately

as possible. Total duration of the testing session, including practice

and psychometric function phases, was approximately 2 hours and

15 minutes.

Pupillometry
Pupil diameter and gaze position were recorded during all non-

practice blocks, at a sampling rate of 250 Hz. Gaze position was

calibrated via the standard Eyelink procedure before the start of

each block of trials. Pupil diameter was originally recorded in

arbitrary pixels. We derived a subject-specific scaling factor by

measuring the size of a ‘model pupil’ of precisely known diameter,

under the same physical conditions (camera focus, distance to

camera) used for testing that subject. This scaling factor could then

be used to convert the pupillometric time series to units of mm.

Eye-blinks and other noise transients were removed offline using a

custom linear interpolation algorithm that restricted interpolation

to periods of consecutive data loss that were shorter than 1 second.

We then identified remaining artifactual samples by applying

amplitude (any sample ,1 mm), gradient (any difference in

consecutive samples .0.02 mm) and gaze position (any sample in

which gaze deviated from fixation by .5u) thresholds to the

interpolated data. An average of 1.663.0% of trials contained at

least one artifactual sample within the window 21 to 0 s relative to

dot motion onset and these were excluded from all analyses.

Baseline pupil diameter was defined on each remaining trial as the

mean pupil diameter during the 1 s preceding motion onset

[36,38].

Drift diffusion modelling
We decomposed behavioral data from the RDM task into latent

parameters of the decision process via the drift diffusion model

(DDM; [41–43,45,49]). The DDM assumes that for two-alterna-

tive forced choice decisions, noisy sensory evidence is accumulated
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from a starting point z at drift rate v. The moment-to-moment

noise during accumulation is governed by the s parameter, which

refers to the standard deviation of a zero-mean Gaussian

distribution from which random increments to the deterministic

component of the accumulation process (represented by v) are

drawn. The s parameter acts to scale all other parameters in the

model across conditions and individuals. Hence it tends to be fixed

in the vast majority of DDM fits at the arbitrary value of 0.1, and

this was the case in our study. The DDM assumes that a response

is initiated when a criterial amount of evidence has been

accumulated to pass one of two opposing boundaries correspond-

ing to either choice option. The distance between these boundaries

is referred to as the response threshold a. The model ascribes all

non-decision-related processing such as sensory encoding and

response execution to a non-decision time parameter t. Further-

more, the full DDM identifies three different sources of trial-to-

trial variability in order to account for the full range of empirically-

observed RT distributions: variability in drift rate (g), variability in

starting point (sz), and variability in non-decision time (st).
We fit the DDM according to a hierarchical Bayesian

application of the model [49], which estimates single-subject

DDM parameters and group-level distributional (mean, variance)

parameters simultaneously via Markov chain Monte Carlo

(MCMC) sampling techniques. Within this framework, group-

level data effectively constrain parameter estimates for any one

individual. In doing so, the hierarchical DDM confers a critical

advantage over non-hierarchical approaches in that it yields more

reliable parameter estimates when working with low trial numbers

[49,50]. This advantage is especially decisive when a between-trial

variability parameter is of interest, as emerged to be the case here,

since reliable estimation of such parameters using non-hierarchical

model fitting typically requires a particularly large number of

observations.

For each subject, trials were collapsed across dot motion

direction and classified by response accuracy (correct, error) before

model fitting. Preliminary analyses indicated that relationships

between pupil size and behavior were predominantly linear

(Figure 3C,D). Trials were therefore sorted by baseline pupil

diameter and pooled into two bins containing the lowest 2/5ths

and highest 2/5ths of diameter values for each subject (referred to

as ‘low’ and ‘high’ pupil bins in the main text). These bin bounds

produced a reasonable trade-off between maximising trial counts

for modelling (average of 160613 correct and 36611 error trials

per bin after artifact rejection) and yielding a robust effect of pupil

bin on overt behavior.

The hierarchical DDM, implemented via the Metropolis-

Hastings MCMC sampling algorithm in WinBUGS [61], was fit

to RT and accuracy data from both pupil bins, pooled across all

participants. Six independent chains of 15,000 iterations each

were generated from the full posterior distribution, with the first

10,000 iterations of each chain discarded as burn-in. Chain

convergence was assessed by computing, for each parameter, the

R̂R criterion comparing between- to within-chain variance [62].

Initial fitting attempts indicated that the sz parameter failed to

converge across simulation chains; hence this parameter was

omitted from the model [50]. R̂R statistics for all remaining

parameters were lower than 1.05, indicating good convergence.

Model fit was visualized by generating posterior predictive data

from the full posterior distribution of the parameters; specifically,

we simulated 1,000 new datasets on the basis of 1,000 samples

from the posterior, pooled the simulations across all 1,000 datasets,

and plotted the pooled simulations against the observed data

(Figure 2B; Figure S2).

We tested for the presence of baseline pupil bin effects on

parameters representing the group-level means of the a, t, v and g
parameters by computing posterior effect distributions of the

change in each parameter from low to high pupil bins. That is, a

difference measure (high minus low bin) for each group-level mean

was derived from each of the 30,000 samples from the full

posterior, and the effect distributions were constructed from these

difference scores. Effect size was quantified for each effect

distribution by computing the probability mass that lay above or

below zero – if most of the mass was above zero then that

parameter likely increased with increasing pupil diameter, whereas

the parameter likely decreased with increasing pupil diameter if

most of the mass was below zero.

Three other versions of the DDM were also fit to the data in

order to further verify the primary results. First, we imposed an

additional constraint on the above hierarchical DDM such that g
was only estimated at the group level, thereby facilitating more

stable estimation of the group-level distributions for this parameter

[cf. 50] (Figure S2). Second, we imposed the restriction that only g
was free to vary across pupil bin, thereby interrogating the

relationship between g and baseline pupil diameter in a more

constrained manner (Figure S3). Third, we fit the full non-

hierarchical DDM to the behavioral data using the DMAT

toolbox [63] (Figure S4). Specifically, we fit the non-hierarchical

model to each subject’s behavioral data by computing five RT

quantiles (0.1, 0.3, 0.5, 0.7, 0.9) for both correct and error

responses within each pupil bin, computing their likelihood given

model predictions, and optimizing model fit via the standard

DMAT Simplex minimization routine [63]. As was the case with

our primary hierarchical analysis, the a, v, t and g parameters

were free to vary across pupil bins while all other parameters were

fixed across pupil bins.

Model simulations
The overt behavioral consequences of incremental changes to

specific parameters of the decision process were explored by using

the DDM to generate simulated accuracy and RT data. We

randomly drew sets of DDM parameters for 26 mock ‘subjects’

from the estimated group-level parameter distributions (without

marginalizing over each pupil bin) of our previously-fit hierarchi-

cal DDM. Employing the same sample size as our empirical study

and drawing parameter sets from the fitted HDDM effectively

ensured that any information gleaned by simulation could be used

to make inferences about how changes to particular DDM

parameters would affect overt behavior within our specific

empirical setting. Next, we sought to address two questions by

adjusting specific model parameters of interest and simulating

behavioral data. First, does a change in the g parameter of the

DDM effect a change in observed RT variability? To address this

question, we constructed two conditions within which g was

systematically varied over a large range (from 0.05 to 0.2 in 0.005

increments), in unison for the entire sample of simulated subjects,

while holding all other parameters constant. We varied g
independently within each condition in such a way as to cover

the entire two-dimensional space of pairwise comparisons within

the broad range of g values, and compared the variability in both

correct and error RTs between the two conditions (Figure 4). The

second question centred on whether the s parameter (representing

within-trial variability in evidence accumulation) is capable of

producing patterns of behavior that are consistent with a change in

g (i.e. changes in accuracy and the gap between correct and error

RTs; see main manuscript). Again, we constructed two conditions:

one ‘reference’ condition within which g and s were fixed (at 0.125

and 0.1, respectively, thus mimicking the ‘low pupil’ condition of
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our empirical study), and a second in which both g and s were

systematically varied over moderate ranges (0.06–0.19 for the

former, 0.07–0.13 for the latter, both in increments of 0.005). As

with the g/RT variability analysis, g and s were varied

independently to cover the entire two-dimensional space of

pairwise comparisons within these ranges; here, however, we

compared response accuracy and the difference between mean

error and correct RTs between the ‘varying’ condition and the

fixed reference condition (Figure S6). In both of the above

analyses, 50,000 trials were simulated per condition per subject;

this large number circumvented any noise introduced by low trial

numbers and yielded reasonable estimates of the true nature of the

underlying effects of interest.

In an effort to reconcile the results reported here with previous

research demonstrating a link between pupil size and RT

variability on easy detection tasks [36,38], we also explored the

effects of a change in g on RT variability in a simpler decision

making context. To this end, we simulated further sets of

behavioral data in the manner outlined above, but now using a

one-choice diffusion model under conditions of high stimulus

discriminability (thus simulating an easy decision making context

in which RTs are typically fast and error responses absent;

[36,38]). The standard two-bound diffusion model could also be

employed to simulate such situations, and would yield very similar

results under conditions of sufficiently high drift rate. Parameter

sets were again devised for 26 mock subjects; this time, they

were randomly drawn from normal distributions with group

means and across-subject variances that were based on a

one-choice diffusion model fit to behavior during an easy

visual detection task, as reported in a previous publication

[52] (mean 6 SD: v = 0.77760.191; a = 0.13660.017; t =

0.25360.034; st = 0.13660.037). Again, two conditions were

constructed within which g was systematically varied over a large

range (from 0.1 to 0.4 in 0.01 increments), and condition-related

differences in RT variability were examined (Figure 4E). This

range of g extends well beyond that encompassed by the

distribution of fitted g values in [52] (mean 6 SD:

0.26260.076), and thus likely encompasses the full range of

realistic g values in this particular decision making context.

Pupillometric analyses
We interrogated trial-by-trial links between baseline pupil

diameter and overt task behavior via within-subjects regression

analyses. The relationship between pupil diameter and response

accuracy was probed via logistic regressions of single-trial accuracy

on pupil diameter, according to the following equation:

Pcorrect~ 1ze{ b0zb1�Pupilð Þ
� �{1

ð1Þ

where Pcorrect is the probability of making a correct motion

discrimination decision, Pupil is z-scored single-trial baseline pupil

diameter, and for all equations, bi are fitted regression coefficients.

This approach yielded per-subject regression coefficients repre-

senting the strength and direction of the relationship between

pupil diameter and response accuracy (b1 in Equation 1; referred

to as bAcc in main text). To examine the single-trial relationship

between baseline pupil diameter and RTs, we fit the following

linear regression model:

RT~b0zb1 � Acczb2 � Pupilzb3 � Acc � Pupilð Þ ð2Þ

where RT indicates z-scored, log-transformed single-trial RT, Acc
is a binary indicator variable representing single-trial accuracy

(coded as 1 = correct, 0 = error), and the final term represents the

interaction between the Acc and Pupil predictors. For the present

purposes, the most interesting quantity from this model is the

regression coefficient estimated for the interaction term (b3 in

Equation 2; referred to as bRT* in main text), as it indicates

whether the nature of the relationship between pupil size and RT

changes as a function of the accuracy of the current trial – or

alternatively, whether any discrepancy between correct and error

RTs changes as a function of baseline pupil diameter. Lastly, we

also fit two expanded regression models, according to the following

equations:

Pcorrect~ 1ze{(b0zb1�Pupilzb2�Acci{1zb3�Gazexzb4�Gazey)
� �{1 ð3Þ

RT~b0zb1 � Acczb2 � Pupilzb3 � Acc � Pupilð Þz

b4 � Acci{1zb5 � Gazexzb6 � Gazey

ð4Þ

where Acci-1 is a binary vector representing previous-trial

accuracy, Gazex is z-scored mean pre-stimulus gaze position along

the horizontal axis, and Gazey is z-scored mean gaze position along

the vertical axis. The additional terms in these models make it

possible to examine the relationships between baseline pupil

diameter and accuracy (Equation 3) and RT (Equation 4) while

statistically controlling for any sequential behavioral/pupillometric

effects determined by previous-trial accuracy, and also for any

effects of baseline-period gaze position on pupil diameter or

behavior (see Figure S5). Group-level effects on fitted b values for

individual predictors were tested via one-sample t-tests (H0: b = 0).

Uni-linear between-subjects correlations were conducted using

Pearson’s r. Average baseline pupil diameter for a given subject

was defined as the mean of all single-trial baseline pupil measures

for that subject pooled across the entire task, thus yielding a per-

subject estimate of pupil size that could be subjected to individual

differences analysis. Somewhat surprisingly, this average pupil

metric did not significantly correlate with subject age (r = 20.28,

p = 0.16), perhaps because the age range of our sample was quite

narrow. Subject-specific average DDM parameters were calculat-

ed by taking the mean of the relevant marginal posterior for each

subject, without marginalizing over pupil bin. The change in drift

rate variability from low to high pupil bins (Dg) was calculated by

constructing subject-specific posterior effect distributions in the

manner outlined for group-level effects above, and extracting the

mean of each distribution.

Supporting Information

Figure S1 Posterior predictive data from the primary
hierarchical model illustrating model fit for each single
subject. Negative distributions indicate error RTs. Histograms

illustrate observed data; overlaid lines illustrate predicted data.

Text at inset indicates subject number and estimated pupil-linked

change in drift rate variability (Dg) for that subject.

(TIF)

Figure S2 Graphical representation and posterior effect
distributions from an alternative hierarchical model in
which drift rate variability was only estimated at the
group level. A. Directed acyclical graph with the same

conventions as Figure 2B. Note that the g parameter representing

between-trial variability in drift rate is located outside the

participant loop, and thus only estimated at the group level. B.
Posterior distributions representing the effect of pupil diameter bin
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(high – low) on selected parameters from the alternative model

depicted in (A). As in Figure 2D of the main manuscript, the m
notation refers to the estimated mean of the group-level

distribution for each parameter while P denotes the mass of the

effect distribution that is above or below zero. Vertical red lines

indicate the mode of each distribution.

(TIF)

Figure S3 Graphical representation and effect distribu-
tion from a second alternative hierarchical model in
which only drift rate variability was free to vary across
pupil bins. A. Directed acyclical graph with the same

conventions as Figure 2B and Figure S2A. Note that the g
parameter is located inside the pupil bin loop, but all other

parameters are outside this loop. B. Posterior distribution from the

alternative model depicted in (A), representing the effect of pupil

diameter bin (high – low) on g. The m notation refers to the

estimated mean of the group-level distribution for each parameter

while P denotes the mass of the effect distribution that is above or

below zero. Vertical red lines indicate the mode of the distribution.

(TIF)

Figure S4 Parameter estimates from a fit of the full
non-hierarchical drift diffusion model to each subject’s
observed data. Basic model constraints mimicked those of the

hierarchical diffusion model depicted in Figure 2 of the main

manuscript: the model was fit to data from both high and low

baseline pupil bins, and a, t, v, and g were free to vary across pupil

bin. See Materials & Methods for details of the fitting procedure.

Error bars = S.E.M. * = p,0.05.

(TIF)

Figure S5 Previous-trial accuracy and gaze position do
not account for the observed relationships between
pupil diameter and overt behavior. A. Grand-average

evoked pupil responses locked to the time of the decision, for

both correct and error trials. Dashed vertical lines indicate the

grand-mean RTs for both response types, shaded regions indicate

S.E.M. Note the error-related increase in pupil diameter, relative

to correct trials, is sustained well beyond the latency of peak

dilation. B. This sustained error-evoked increase in pupil diameter

manifested as larger baseline pupil diameter values, on average,

when the previous trial was an error compared to a correct

decision. C. Mean b coefficients from an expanded logistic

regression model quantifying the relationship between single-trial

response accuracy and a selection of predictors (Equation 3 in

main text). Notably, neither previous-trial accuracy nor pre-

stimulus gaze position predicted current-trial accuracy, though the

relationship between baseline pupil diameter and accuracy

remained present. D. Mean b coefficients from an expanded

linear regression model with single-trial RT as the dependent

variable, including the same additional covariates as in (C)

(Equation 4 in main text). The previously-observed pupil *

current-trial accuracy interaction effect remained intact in the

presence of the additional terms. The highly significant effects for

the Accuracy (t) and Accuracy (t-1) predictors indicate that RTs

were slower on error compared to correct trials (see also main

text), and that RTs slowed down after errors, respectively. Error

bars = S.E.M. *** = p,0.001. * = p,0.05 (one-tailed).

(TIF)

Figure S6 Effects of time-on-task on task behavior and
pupil diameter. A,B,C. Plots depicting the average response

accuracy (A), correct and error RTs (B) and baseline pupil

diameter (C) for each block of task performance. Analysis of the

linear effect of task block on each measure revealed no significant

effects (all p.0.1). Error bars = S.E.M.

(TIF)

Figure S7 Dissociating the effects of between- and
within-trial variability in evidence accumulation rate
on observable behavior. A. Heat map illustrating the effect of

simulated changes in the g and s parameters of the drift diffusion

model on response accuracy. Two conditions were constructed:

one ‘reference’ condition in which g and s were fixed (at 0.125 and

0.1, respectively, thus mimicking the ‘low pupil’ condition of our

empirical study), and a second in which both g and s were

systematically varied over moderate ranges. Each pixel of the heat

map represents the condition-related difference in response

accuracy, averaged across 26 simulated subjects, for a specific

pairwise comparison of one pair of g and s values with the fixed

reference condition (see Materials and Methods) – hotter colors

indicate higher response accuracy in the ‘varying’ condition

compared to the reference condition. The black cross indicates the

position of the reference condition in the two-dimensional

parameter space within which g and s were varied. The plot

indicates that an increase in either, or both, of the variability

parameters leads to decreased response accuracy. B. Heat map

illustrating the effect of simulated changes in the g and s
parameters on the difference between mean error and correct

RTs. Method and conventions are the same as in (A); hotter colors

indicate comparatively slower error compared to correct RTs in

the ‘varying’ compared to the reference condition. The plot

indicates that the g and s parameters have opposite effects on the

error/correct RT discrepancy: increased g produces slower error

compared to correct RTs, while increased s produces faster error

compared to correct RTs.

(TIF)
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