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Sequential sampling decision-making models have been successful in accounting for
reaction time (RT) and accuracy data in two-alternative forced choice tasks. These
models have been used to describe the behavior of populations of participants, and
explanatory structures have been proposed to account for between individual variability
in model parameters. In this study we show that individual differences in behavior from
a novel perceptual decision making task can be attributed to (1) differences in evidence
accumulation rates, (2) differences in variability of evidence accumulation within trials, and
(3) differences in non-decision times across individuals. Using electroencephalography
(EEG), we demonstrate that these differences in cognitive variables, in turn, can be
explained by attentional differences as measured by phase-locking of steady-state visual
evoked potential (SSVEP) responses to the signal and noise components of the visual
stimulus. Parameters of a cognitive model (a diffusion model) were obtained from
accuracy and RT distributions and related to phase-locking indices (PLIs) of SSVEPs with a
single step in a hierarchical Bayesian framework. Participants who were able to suppress
the SSVEP response to visual noise in high frequency bands were able to accumulate
correct evidence faster and had shorter non-decision times (preprocessing or motor
response times), leading to more accurate responses and faster response times. We
show that the combination of cognitive modeling and neural data in a hierarchical Bayesian
framework relates physiological processes to the cognitive processes of participants,
and that a model with a new (out-of-sample) participant’s neural data can predict that
participant’s behavior more accurately than models without physiological data.
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1. INTRODUCTION
The joint analysis of physiological and behavioral data has been
a topic of recent interest. In a string of publications, a number
of research groups (Forstmann et al., 2010; Turner et al., 2013;
Cassey et al., 2014) have presented work in which neurophysio-
logical data are linked to parameters of cognitive or behavioral
process models (see also Palmeri et al., in preparation). The goal
of these modeling exercises is not only to evaluate the predic-
tive power of brain activity for behavior, but also to elucidate the
nature of this prediction. The use of cognitive models with neu-
ral data and cognitive parameters permits more psychologically
interpretable labeling of the neurophysiological measurements,
providing links between brain activity, cognition, and behavior.

In the present paper, we apply a cognitive model constrained
by EEG data to fit accuracy and response times of multiple indi-
viduals from a perceptual decision making task. The goal of the
model fit is twofold: (1) to demonstrate the superior generaliz-
ability of such a model as compared to model variants without
neural input components and (2) to evaluate the hypothesis that
individual differences in enhancement or suppression of visual

attention, as measured by EEG, contribute to individual differ-
ences in cognition and thus to individual differences in accuracy
and/or reaction time in the task.

In order to show out-of-sample generalizability, we first fit the
model to a training set of participants and obtain the requisite
(population-level) linking parameters, and then make predictions
about the behavior of a new participant to which the model was
not trained. In the sections that follow, we will describe (1) the
cognitive process model that we have chosen, (2) the task to which
it is applied and the EEG data that we collected, (3) a series of
three models of increasing complexity, of which the model with
external attentional EEG covariates is the most complex, (4) the
results of the generalization exercise and (5) evaluation of the
hypothesis.

1.1. STEADY-STATE VISUAL EVOKED POTENTIALS AS A MEASURE OF
ATTENTION

In this study, we will demonstrate how attentional mechanisms
can explain individual differences in perceptual decision making
as estimated by a cognitive model. In a typical visual attention
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experiment, the signal stimulus is attended and preferentially pro-
cessed while competing stimuli (i.e., visual noise) are not further
processed. A number of studies have demonstrated that a measure
of the deployment of attention can be obtained by using flicker-
ing stimuli and electroencephalographic (EEG) recordings of the
(frequency tagged) steady-state visual evoked potentials (SSVEPs)
(Morgan et al., 1996; Müller et al., 1998; Ding et al., 2006; Bridwell
and Srinivasan, 2012; Garcia et al., 2013). SSVEPs are narrow
band responses at the visual flicker frequencies and flicker har-
monics of a stimulus (Regan, 1977). When a stimulus is attended,
the SSVEP is enhanced, and when a stimulus is not attended or
suppressed, the SSVEP is diminished. This approach has been
used to investigate individual differences in attention strategy in
detection and discrimination tasks. Bridwell et al. (2013) found
that only a subset of participants could deploy the optimal atten-
tion strategy and modify their strategy by the task demands. An
SSVEP approach has also been used to show that individuals are
trained by their own experiences. Individuals with attentional
training due to a history of fast-action video gaming have been
found to preferentially suppress noise rather than enhance the
signal, and those individuals performed better at vigilance tasks
(Krishnan et al., 2013).

1.2. DIFFUSION MODELS FOR TWO-CHOICE RESPONSE TIMES
Diffusion models are a class of sequential-sampling models for
reaction time (RT) and response data that can capture the joint
distribution of RT and accuracy in speeded choice tasks. This
family of models has been useful in explaining between- and

within-participant variability in two-alternative forced choice
decision making experiments (Vandekerckhove et al., 2008,
2011). Diffusion models also add to the analyses of participants’
behavior by assuming underlying cognitive processes which have
some empirical validation (Voss et al., 2004). In particular, they
assume that at each trial, participants obtain relative evidence
from a stimulus over time until sufficient evidence is accumu-
lated to exceed the threshold for one of the two choices (Stone,
1960; Link and Heath, 1975; Ratcliff, 1978). This process of rel-
ative evidence accumulation is modeled as a Wiener diffusion
process (or Brownian motion) and can be thought of as a con-
tinuous random walk process—that is, a random walk process
where in each infinitesimal time step, the evidence increases by
a random amount according to a normal distribution with some
mean and some instantaneous variance (Ratcliff, 1978). A visual
representation of the model is provided in Figure 1.

Fitting RT and choice behavior using the diffusion model is
a useful behavioral analysis tool since the model’s parameters
have interpretable psychological correlates. The drift rate δj rep-
resents the mean rate of evidence accumulation of participant j
during their decision process. The drift rate is thought to reflect
the quality of evidence the participant obtains during an exper-
imental trial (Ratcliff et al., 2001). The diffusion coefficient ςj

is the parameter that represents the amount of variability in the
evidence accumulation process within one trial (i.e., the instanta-
neous variance). The bias parameter βj is the proportion of bias a
participant j has in favor of choice A over choice B (it should be
noted that we fix the bias parameter to 1

2 in this paper since we

FIGURE 1 | A visual representation of the diffusion model. The orange
line represents the participant’s stochastic evidence accumulation process
during one trial. When a participant accumulates enough evidence over
time for a correct or incorrect response (graphically represented by the
top and bottom boundaries at 0 and α, respectively) a decision is made.
The drift rate δ is the mean rate of evidence accumulation (evidence
units per second) during the participant’s decision time on one trial. The
bias parameter β represents a bias of the participant toward one choice
or the other (set to 1

2 when the model parameters are expressed in
terms of correct over incorrect evidence instead of choice A over choice
B evidence). The non-decision time τ is the portion of the participant’s
reaction time (RT) during the trial not associated with decision making,
equal to the sum of encoding/preprocessing time τ (a) and motor response

time τ (b) which are not estimable. The boundary separation parameter α
represents the amount of relative evidence needed to make a decision.
Another parameter is the variability in the evidence accumulation
process, the diffusion coefficient ς . In this trial the diffusion coefficient is
large in comparison to a smaller diffusion coefficient as shown by the
light blue dashed line. The teal shaded areas represent the correct (top)
and incorrect (bottom) reaction time distributions. In this example the
systematic component of the decision making process is positive δ > 0
indicating a mean trend toward correct responses. However, incorrect
responses can still be reached due to the random component of the
decision making process (the diffusion coefficient ς ). Larger ς indicate
that a participant would be increasing likely to make faster decisions, but
have closer to chance performance (i.e., an accuracy of β).
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model behavior as correct vs. incorrect trials instead of choice A
over choice B trials). The non-decision time τj is the amount
of time during the response process that is not associated with
the decision making process, such as preprocessing of the stimu-
lus and/or motor response time. Finally, the boundary separation
parameter αj represents the amount of relative evidence needed to
make a decision and is typically manipulated by task instructions
emphasizing either speed or accuracy (Ratcliff et al., 2001; Voss
et al., 2004). It is important to note that the model is not identifi-
able unless we constrain at least one of the parameters that pertain
to the evidence dimension (i.e., diffusion coefficient ς , drift rate
δ, or boundary separation α).

1.3. THE CASE FOR HIERARCHICAL BAYESIAN MODELS
Recent advances in mathematical psychology have introduced
hierarchical Bayesian versions of cognitive models (Rouder et al.,
2005; Vandekerckhove et al., 2011). The advantages of these
hybrid modeling–measurement strategies include more princi-
pled (Bayesian) statistical inference, increased statistical power
(Vandekerckhove et al., 2010), and interpretability of results in
terms of psychological concepts rather than statistical summary
(Vandekerckhove, 2014). The use of cognitive models as mea-
surement tools has become known as cognitive psychometrics (e.g.,
Batchelder, 2010).

The hierarchical Bayesian process modeling framework is ide-
ally suited for the joint analysis of multiple modes of data—
(Turner et al., 2013) describe three such joint modeling strategies
and (Vandekerckhove, 2014) describes a fourth. One strategy
afforded by hierarchical Bayesian models involves constraining
the estimation of cognitive process models by introducing the
brain data as (fixed) covariate information. This strategy carries
the disadvantage that it does not by default allow for mea-
surement variance on the neurophysiological side, but has the
advantage of being relatively straightforward to implement in a
computationally efficient fashion. By conditioning the estima-
tion of the cognitive parameters on brain data (or other external
covariates), it is expected that unexplained variability between
participants can be reduced, and consequently that such a model
should perform better in generalization tests.

Interindividual variability (i.e., variability in the participant-
level cognitive parameters; changes over subscript j) in diffu-
sion models has been previously analyzed by fitting a diffusion
model to each participant individually then comparing parame-
ters across model fits. The individual differences were then gauged
by statistical analyses on the models’ resulting maximum like-
lihood parameter estimates (Ratcliff et al., 2001; Wagenmakers
et al., 2008). Some limitations to this technique are that large
sample sizes are needed for diffusion model parameter estima-
tion, that shared condition-level differences across individuals
cannot be easily evaluated (Wagenmakers, 2009; Vandekerckhove
et al., 2011), and that statistical uncertainty is not propagated
across stages of the analysis. Hierarchical Bayesian methods along
with Monte Carlo sampling techniques allow for the estimation
of complex models. These methods have been used to explain
individual differences in the diffusion model and other cognitive
models without the need for large sample sizes (Lee, 2008; Lee
and Newell, 2011; Vandekerckhove et al., 2011). Additionally, the

hierarchical framework allows for between-participant variability
to be explained when each participant’s diffusion model param-
eters are functionally related to known exogenous data (e.g.,
physiological data).

1.4. CONSTRAINING MODEL PARAMETERS WITH EEG DATA
We assume that brain activity compels cognition, which in turn
drives participant behavior. Assuming attention constrains one
or more of the cognitive processes in perceptual decision mak-
ing, then as a consequence of attentional mechanisms we expect
SSVEPs to help explain between-participant variability in the
parameters of the diffusion model and thus between-participant
variability in RT and accuracy. In one study, an occipital SSVEP
amplitude was shown to track visual sensory evidence over the
time course of a trial, suggesting that SSVEPs can reflect the
evidence accumulation process itself (O’Connell et al., 2012).
The experimental stimulus used in this study involves a flick-
ering signal overlayed on time-varying visual noise, designed to
evoke separate SSVEP responses to the signal and the visual noise,
which we expect will explain individual differences in the model
parameters and behavior.

We hypothesize increased within-trial evidence accumulation
rates, reflected by increased drift rates, for those subjects who
suppressed attention to the visual noise. We further hypothe-
size that another benefit of attention for RT and accuracy is
a result of reduced within-trial variability in the accumulation
of evidence. Thus, we predict an across-individuals relationship
between enhanced attention to the signal and decreased diffusion
coefficients.

As mentioned above, one of the parameters of the diffu-
sion model must be fixed rather than estimated (either diffusion
coefficient ς , drift rate δ, or boundary separation α). For the
present study a variable boundary separation across conditions
is not a valid interpretation of the data since the changes between
conditions occur unannounced, leaving the participant with no
opportunity to adapt strategies (e.g., switch between a speed or
accuracy strategy) in response to stimulus changes. In our param-
eterization, we leave the diffusion coefficient ς free to vary, set α
to one evidence unit, and assume no bias (β = 1

2 ) toward cor-
rect responses. The joint density f of RT t and accuracy w of this
simplified diffusion model is given in Equation 1. The density is
derived from the limiting approximation given by Ratcliff (1978)
where z = 1

2α and α = 1.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f (t,w = 0 | ς2, τ, δ) = πς2e
− 1

2

[
δ
ς
+δ2(t−τ)

]

+∞∑
k = 1

[
k sin

( 1
2πk

)
e− 1

2 k2π2ς2(t−τ)]

f (t,w = 1 | ς2, τ, δ) = f (t,w = 0 | ς2, τ,−δ)

(1)

In what follows, we will use the effect of attention, as measured by
SSVEPs, to constrain diffusion model parameter estimates (in our
case δj, ςj, and τj). In particular, we assume that, on each trial, a
participant’s attention is reflected in phase locking (i.e., SSVEPs)
to the attended visual signal and decreased phase locking to the
unattended visual noise.
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We will demonstrate that the hierarchical Bayesian SSVEP-
driven diffusion model has predictive ability as well as descriptive
ability—more specifically, that our ability to predict each partic-
ipant’s accuracy and RT behavior is improved by including the
SSVEP measures of attention processes.

2. MATERIALS AND METHODS
2.1. PARTICIPANTS
The following study was approved by the University of California,
Irvine Institutional Review Board and was performed in accor-
dance with APA standards. Informed consent was obtained from
each of the seventeen participants (8 females and 9 males) who
took part in the study. The mean age of 16 of the participants
was 25 with an age range of 21–30. Another participant was over
45 years of age. Sixteen participants self-identified as being right
handed while another identified as being left or ambidextrous. All
participants had at least 20/30 vision or corrected vision as mea-
sured by a visual acuity chart available on the internet (Olitsky
et al., 2013). No participants reported any history of neurologi-
cal disorder. Each participant completed the experiment in one
session within 2.5 h.

2.2. EXPERIMENTAL STIMULUS
The participants were given a two-alternative forced-choice per-
ceptual decision making task in which they were asked to differ-
entiate the mean rotation of bars within a circular field of bars
that deviated randomly from mean rotation. One half of the trials
had a mean bar rotation of 45◦ while the other half had a mean
rotation of 135◦. The bar field was flickered against a time-varying
noise pattern.

The participants viewed each trial of the experimental stim-
ulus on a monitor in a dark room. The time course of one trial
is shown in Figure 2. Participants were positioned such that the
entire circular field of small oriented bars had a visual angle of
9.5◦. Within each trial the participant first saw a black cross for
750 ms in the middle of the screen on which they were instructed
to maintain fixation throughout the trial. The participant then
observed visual contrast noise changing at 8 Hz for 750 ms; this

time period of the trial will be referred to later in this paper as
the noise interval. The participant then observed a circular field of
small oriented bars flickering at 15 Hz overlaid on the square field
of visual noise pattern changing at 8 Hz and responded during
this time frame, henceforth referred to as the response interval.
The visual noise and bar field are modulated at constant rates
(8 and 15 Hz, respectively) to evoke frequency-tagged signal and
noise responses in the cortex which we measured as steady-state
visual evoked potentials (SSVEPs). The SSVEP responses at the
signal frequencies (15 Hz and its harmonics) and at the contrast
noise frequencies (8 Hz and its harmonics) were used to measure
the effect of attention to the signal stimulus and noise stimulus.
The display time of the response interval was sampled between
1000 and 2000 ms from a uniform distribution. After this display
period the black fixation cross was shown in isolation for 250 ms
to alert the participant the trial was over and to collect any delayed
responses.

Three levels of variance of bar rotation and three levels of con-
trast noise were used to modulate the task difficulty. In the first
level of bar rotation variance, each bar was drawn from a uni-
form U( − 30◦, 30◦) distribution centered on the mean angle.
In the two other levels, the rotations of each bar were drawn
from U( − 35◦, 35◦) and U( − 40◦, 40◦), respectively. The three
levels of contrast noise were 30% contrast noise, 45% contrast
noise and 60% contrast noise. The 30% contrast noise condi-
tion was obtained by the addition of a random draw from a
U( − 15%, 15%) distribution to the luminance of each pixel in
a square field. Baseline luminance was 50%. The other contrast
noise conditions were obtained similarly. Each participant was
shown 90 trials from each bar rotation-noise condition combi-
nation.

The bar rotation (BR) variance manipulation was hypothe-
sized to modulate each participant’s diffusion coefficient since
the participant would have more variable information in harder
trials. Considering each bar’s rotation as a unit of information
contributing to a “left” or “right” response, information would be
more variable in trials that sampled the BRs from wider uniform
distributions. It was thought that contrast noise would degrade

FIGURE 2 | The time course of one trial of the experimental stimulus.

The participant first fixated on a black cross for 750 ms indicating the
beginning of a trial. The participant then observed visual contrast noise
changing at 8 Hz for 750 ms while maintaining fixation. A circular field of small
oriented bars flickering at 15 Hz overlaid on the changing visual noise was
then shown to the participant for 1000–2000 ms. The task was to indicate

during this response interval whether the bars were on average oriented
toward the “top-right” (45◦ from the horizontal line; as in this example) or
“top-left” (135◦) corners. It was assumed that the participant’s decision
making process began at the start of the response interval. After the
response interval, the fixation cross was shown in isolation for 250 ms to alert
the participant that the trial was over and to collect remaining responses.
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the amount of information each bar gave to the decision pro-
cess thus leading to smaller drift rates in trials with higher noise
contrast.

2.3. BEHAVIOR AND EEG COLLECTION
Participants first completed a training session of 36 trials each.
Participants were asked to complete a second training set if their
percentage accuracy was subjectively judged by the experimenter
to not converge to a stable value. Each participant completed
6 blocks of 90 trials each for a total of 540 trials with breaks
between each block of variable time. Each trial lasted randomly
(uniformly) from 2.75–3.75 s. Participants were asked to respond
during the 1–2 s response interval as accurately as possible, with
no-answer trials considered as incorrect. To maintain partici-
pant performance, auditory feedback was given after the response
interval to the alert the participant if they were correct or incor-
rect. Performance feedback was also provided between blocks
by displaying on the screen the percentage of trials answered
correctly in that block. The behavioral data consists of each
participant’s accuracy and RT during each trial.

High-density electroencephalography (EEG) was collected
using Electrical Geodesics, Inc.’s 128-channel Geodesic Sensor
Net and Advanced Neuro Technology’s amplifier with electrodes
sitting on the participant’s scalp throughout the duration of the
experiment. Electrical activity from the scalp was recorded at a
sampling rate of 1024 samples per second with an online average
reference using Advanced Neuro Technology’s digitization soft-
ware. The EEG data was then imported into MATLAB for offline
analysis.

Linear trends were removed from the EEG data. As we
were only interested in 1–50 Hz EEG, the following filters were
applied to each channel: (1) A high pass Butterworth filter
with a 1 Hz pass band with 1 dB ripple and 0.25 Hz stop band
with 10 dB attenuation, (2) a stopband Butterworth filter with
59 and 61 Hz pass bands with 1 dB ripple and 59.9–60.1 Hz
stop band with 10 dB attenuation (to remove power-line noise),
and (3) a low pass Butterworth filter with a 50 Hz pass band
with 1 dB ripple and 60 Hz stop band with 10 dB attenuation.
Artifactual data thought to be generated by phenomena out-
side of the cortex were removed from the EEG data using a
paradigm involving Independent Component Analysis (ICA):
First, any trials or channels were rejected that had time-courses
unusual for cortical activity and/or had properties that ICA
is deemed to not extract well, such as trials with high fre-
quency activity indicative of muscle activity, trials or channels
with high 60 Hz amplitude indicative of power-line noise sug-
gesting poor electrode-to-skin connection, or trials with sudden
high amplitude peaks that cannot be generated by cortical activ-
ity (Delorme et al., 2007). Second, ICA was used to remove
linear mixtures of channel time-courses that did not subjec-
tively correspond to EEG data in spatial map on the scalp, in
power spectrum, and/or in event-related potential (ERP). Typical
artifactual components include: those components with spa-
tial maps of highly weighted electrodes near the eyes suggestive
of eye movements, those components with high amplitudes at
high frequencies and low amplitudes at low frequencies sug-
gestive of muscle activity, and spatial maps of highly weighted

singular electrodes suggestive of poor electrode-scalp connec-
tivity. A final cleaning step was performed by rejecting any
trials that had high amplitudes not typical of cortical electrical
activity.

For each participant, steady-state visual evoked potentials
(SSVEPs) to the visual noise and signal (the circular bar field)
were found at each electrode. In this experiment a steady-state
response was defined by the consistency in phase at the frequen-
cies of the stimulus (8 and 15 Hz) and the harmonic frequencies
of the stimulus (16, 24, 32, 40, 48, 30, and 45 Hz). The unifor-
mity of phase across trials was measured by the Phase Locking
Index (PLI) across trials. The PLI is a statistical characterization
of phase synchronization resulting from an experimental stimu-
lus and has been shown to be successful in characterizing cortical
signals (Rosenblum et al., 1996; Sazonov et al., 2009). The PLI
ignores signal amplitude and ranges from 0 (all trials out-of-
phase) to 1 (all trials in-phase; Tallon-Baudry et al., 1996). The
equation used for PLI is provided in Equation 2. PLI is the aver-
age of ≈ 540 trials of amplitude normalized Fourier coefficients
of the time interval. For each electrode e and participant j, PLI is
defined as a function of frequency f .

PLIej(f ) =
∣∣∣∣

1

540

540∑
i = 1

Fiej(f )∣∣Fiej(f )
∣∣
∣∣∣∣ (2)

The steady-state responses to the visual noise were analyzed based
on both the 750 ms noise interval and the first 1000 ms of the
response interval while the steady-state responses to the signal
were analyzed based only on the first 1000 ms of the response
interval. Because steady-state responses located in parietal elec-
trodes have been successfully related to attentional mechanisms
in past studies (Ding et al., 2006; Bridwell and Srinivasan, 2012),
electrical activity at parietal electrodes was hypothesized to be
most descriptive of cognitive processes in the visual decision mak-
ing task. The subject mean PLI at all frequencies averaged over
parietal channels is shown in Figure 3. Topographic maps of the
distribution of the PLI are shown at the fundamental and first
two harmonics for signal and noise frequencies. It is clear that
the SSVEP is broadly distributed over frontal, parietal, and occip-
ital networks, as has been found in other studies (Ding et al.,
2006; Bridwell and Srinivasan, 2012; Krishnan et al., 2013). The
mean PLIs over prefrontal, frontal, central, parietal, and occipital
electrode groups for each of the evoked frequencies were used as
predictors in the model.

We expect the evoked cortical networks to change depen-
dent upon the flicker frequencies of the stimulus (Ding et al.,
2006; Bridwell and Srinivasan, 2012), as shown by the stimulus
response in Figure 3 where the spatial distributions of the fun-
damental and harmonic responses are quite different. However,
we do not expect the behavior of these harmonics to be uncor-
related. To avoid multicollinearity, we performed two principal
components analyses (PCAs; on the noise and signal frequen-
cies separately) to obtain a smaller number of PLI measures
from uncorrelated cortical networks. The first PCA reduced 60
PLI variables (5 cortical locations by 6 noise harmonics in both
the noise and response intervals) to 16 principal components.
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FIGURE 3 | The subject mean parietal channel PLI at all frequencies in

the noise interval (top panel) and the response interval (bottom). The
resolution of the the PLI spectra in the top plot is approximately 1.3 Hz due to
the PLI being a function of Fourier transforms of 750 ms epochs. The
resolution of the PLI spectra in the bottom plot is 1 Hz as the Fourier
transforms are of 1000 ms epochs. The 15 and 16 steady-state responses
during the response interval are separable when using 1000 ms epochs. Also
shown are subject mean PLI topographies (at 8, 16, and 24 Hz during the

noise interval and 15, 30, and 45 Hz during the response interval, each on a
standardized scale) indicating where the maximum subject mean PLI is
located on the scalp in relation to the parietal electrodes (highlighted green).
It is clear from these topographies that using only parietal electrodes will not
capture all of the steady-state response information. An index of electrode
locations is also provided in the top right. Prefrontal, frontal, central, parietal,
and occipital electrode groups are colored light blue, teal, orange, green, and
blue, respectively.

The second PCA transformed 15 PLI variables (5 cortical loca-
tions by 3 signal harmonics) to 15 principal components. Our
criteria for which principal components to include in the hierar-
chical Bayesian models were (1) based upon the improvement of
in-sample predictive power as we increased the number of prin-
cipal components, resulting in candidate principal components
and (2) then based upon the out-of-sample predictive power of
the candidate principal components.

2.4. HIERARCHICAL BAYESIAN MODELS
All trials from every participant were used for model fitting except
those trials in which there was deemed to be EEG artifact and
those trials during which the participant made no response or
responded more than once. Since our models do not account
for non-decision making trials, exceedingly fast trials (faster than
250 ms) were excluded as well.

The marginal likelihood for the model—that is, the predicted
distribution of the data conditional on all parameters—is the first
passage time distribution of a Wiener process with constant drift.
We call this probability density function the Wiener distribution.
For each trial i, subject j, and condition k, the observed accuracy
wijk and RT tijk were combined in a two-element vector yijk. These
values were then assumed to be drawn from a joint distribution:

yijk ∼ W(δijk, ςijk, τijk). (3)

We applied a sequence of three models—each adding a new
feature—to the data.

2.5. MODEL 1: NO INDIVIDUAL DIFFERENCES
We assumed in Model 1 that all three diffusion model parameters
were constant across participants (i.e., that all participants were
identical), and depended only on the experimental condition k.
The diffusion model was fit to the RT and accuracy data of all 17
participants under the assumption that all participants had the
same drift rate δk, diffusion coefficient ςk, and non-decision time
τk that were variable across condition k but not variable across
participant j. Here k denotes both the particular BR condition
and the particular contrast noise condition-level, k = 1, . . . , 9. A
graphical representation of Model 1 is provided in Figure 4A.

The assumptions of the model, together with the prior dis-
tributions for the parameters, appear below. The priors for the
drift rate δk and non-decision time τk were truncated normal
distributions due to the knowledge of the natural constraints of
the diffusion model and prior knowledge of acceptable values
for similar tasks. Note that the second parameter of the normal
distributions below represent the variance.
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A B

FIGURE 4 | A graphical representation of Model 1 (A) and Model 2 (B). In
Model 1, drift rates δk , diffusion coefficients ςk , and non-decision times τk
were assumed to vary over conditions k but remain invariant across
participants j and trials i. There were three bar rotation conditions and three
contrast noise conditions. Here k denotes each bar rotation and contrast

noise pair. In Model 2, drift rates δjk , diffusion coefficients ςjk , and
non-decision times τjk were assumed to vary over both conditions and
participants. Each of these parameters are in turn assumed to be drawn from
normal distributions with means that varied over conditions k and with
variances that did not vary across conditions.

δjk = δk, δk ∼ N (0.0, 5) ∈ ( − 9, 9)
ςjk = ςk, ςk ∼ N (0.5, 4)
τjk = τk, τk ∼ N (0.3, 4) ∈ (0, 1)

2.6. MODEL 2: INDIVIDUAL DIFFERENCES
In Model 2 we assumed that participants differ but are draws from
a single superordinate population (i.e., participants are exchange-
able). Consequently, the drift rate δjk, diffusion coefficient ςjk,
and non-decision time τjk varied by both subject j and con-
dition k. Subject-level parameters were assumed to be drawn
from normal distributions with means that were variable over
condition only. Variances were assumed to be invariant across
conditions to maintain model simplicity (i.e., the model assumes
homoscedasticity in the parameters). The prior distributions of the
parameters are listed below.

(
δjk | νk, η

) ∼ N (νk, η) ∈ ( − 9, 9), νk ∼ N (0.0, 5), η ∼ 
(6, 0.10)(
ςjk | μk, ψ

) ∼ N (μk, ψ), μk ∼ N (0.5, 4), ψ ∼ 
(4, 0.05)(
τjk | θk, χ

) ∼ N (θk, χ) ∈ (0, 1), θk ∼ N (0.3, 4), χ ∼ 
(5, 0.01)

A graphical representation of Model 2 is provided in Figure 4B.

2.7. MODEL 3: INDIVIDUAL DIFFERENCES WITH NEURAL CORRELATES
With Model 3, we will attempt to explain any individual dif-
ferences in cognitive parameters by introducing the neural data
as explanatory variables. The model is similar to Model 2,
but additionally includes a regression structure to explain vari-
ability in subject-level model parameters with steady-state PLI
values.

In order to avoid multicollinearity, PLIs were first subjected
to a principal component analysis (PCA), and the resultant
independent components were used as predictors. The PCA was

performed on the noise and signal frequencies separately. The first
PCA reduced 60 PLI variables to 16 principal components and the
second PCA transformed 15 PLI variables into 15 components.
The criterion used to determine which principal components to
include was the out-of-sample predictive power of each model.
Predictive power was measured as R2

pred, a measure of the per-
centage of total between-subject variance explained, in this case
of the correct-RT medians of each condition. The equation used
for R2

pred is provided in the Supplemental Materials.
Subject-level drift rates δjk, diffusion coefficients ςjk, and non-

decision times τjk were assumed to be drawn from normal distri-
butions with means of the form αk + xᵀ

j γ where αk is condition

k’s effect on the subject-level cognitive parameter, xj is a vec-
tor of principal components, and γ is a vector of regression
coefficients (i.e., the effect of each principal component on the
cognitive parameter). The graphical representation of the model
is provided in Figure 5. The priors of the variance parameters are
the same as in Model 2. Weakly informative prior distributions
of N (0.0, 10) were given to the weight variables that make up
the vectors γ(δ), γ(ς), and γ(τ ). The other hyperpriors and priors
were:

(
δjk | α(δ)k, γ(δ), η

) ∼N
(
α(δ)k + xᵀ

j γ(δ), η
)

∈ ( − 9, 9), α(δ)k ∼N (0.0, 5)
(
ςjk | α(ς)k, γ(ς), ψ

) ∼N
(
α(ς)k + xᵀ

j γ(ς), ψ
)
, α(ς)k ∼N (0.5, 4)

(
τjk | α(τ )k, γ(τ ), χ

) ∼N
(
α(τ )k + xᵀ

j γ(τ ), χ
)

∈ (0, 1), α(τ )k ∼N (0.3, 4)

2.8. POSTERIOR SAMPLING
We used the JAGS software (Plummer, 2003) to analyze the
data by drawing samples from the joint posterior distribution
of the parameters of the hierarchical models. To compute the
likelihood function associated with the assumed decision mak-
ing process (the Wiener distribution), we used the jags-wiener
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FIGURE 5 | Graphical representation of Model 3. Drift rates δjk , diffusion
coefficients ςjk , and non-decision times τjk were assumed to vary over both
conditions and participants. Each of these parameters are assumed to be
drawn from normal distributions with means of the form αk + xᵀ

j γ , where
xj is the vector of SSVEP responses of subject j, and with variances that did
not vary across conditions. As an example, α(τ )k is the condition effect on
the non-decision time and γ(τ ) reflects the change in non-decision time
(seconds) due to a one SSVEP unit difference across two participants.

module (Wabersich and Vandekerckhove, 2013). This allowed us
to explain accuracy and response time distributions within con-
ditions and across subjects. For each model, samples from the
posterior distributions of the parameters were found by run-
ning JAGS with six Markov Chain Monte Carlo (MCMC) chains
of length 21000, with 1000 burn-in (discarded) samples and a
thinning parameter of 10 (keeping only every 10th sample) result-
ing in six joint posterior distribution estimates of 2000 samples
each. We used the R̂ statistic to compare within-chain variance
to between-chain variance in order to assess convergence of the
MCMC algorithm (Gelman and Rubin, 1992).

2.9. POSTERIOR PREDICTIVE DISTRIBUTIONS
To quantify model fit, in-sample posterior predictive distributions
of accuracy-RTs from 5000 simulated experiments were estimated
by sampling from the posterior distributions of subject-level
parameters for each of the three models. That is, s = 1, . . . , 5000
samples were randomly drawn from the subject-level posterior
distributions of the model parameters producing 5000 × 1 col-

umn vectors for each drift rate δ
(s)
jk , diffusion coefficient ς

(s)
jk , and

non-decision time τ
(s)
jk . The samples

(
δ

(s)
jk , ς

(s)
jk , τ

(s)
jk

)
were used

to generate accuracy-RT samples from the Wiener distribution
[with the rejection sampling algorithm described in Tuerlinckx
et al. (2001)].

In order to find candidate PLI predictors for Model 3 and also
to gauge the ability of each model type to predict new subjects’
behavioral data, in-sample and out-of-sample posterior predic-
tive distributions were generated using the PLI coefficients and
posterior distributions of the condition-level parameters to find

predictive distributions of the subject-level parameters. This pro-
cedure does not use samples from the subject-level posterior
distributions directly, but estimates the subject-level parameters
from the posteriors of the condition-level parameters and EEG
covariates before finding a posterior predictive distribution of
accuracy-RTs. Samples from the posterior predictive distribution
of subject j’s mean drift rate on a trial in condition k are drawn

from a normal distribution with mean α
(s)
(δ)k + G(s)

(δ)xj where xj

is the vector of subject j’s principal component PLI values, α
(s)
(δ)k

are samples from the posterior distribution of condition k’s effect

on drift rate, and G(s)
(δ) is a matrix consisting of samples from the

posterior distributions of the PLI coefficients for drift rate. For in-
sample prediction, we fit different possible forms of Model 3, with
different numbers of principal components, 17 times each to gen-
erate in-sample posterior distributions to find candidate principal
components. Then for out-of-sample prediction, we fit different
possible forms of Model 3, with the resulting candidate principal
components, 17 times with each participant removed from the
data set. In the previously mentioned example, both the condi-
tion effect on drift rate and PLI coefficients are estimated from
the model with all subjects except j for out-of-sample prediction.

3. RESULTS
For all models and all parameters, convergence of the Monte
Carlo chains was satisfactory: R̂ ≤ 1.01 for all parameters (R̂ ≥
1.10 is conventionally taken as evidence for non-convergence;
Gelman and Rubin, 1992).

3.1. MODEL 1: NO INDIVIDUAL DIFFERENCES
Marginal posterior distributions of the parameters of Model 1
are plotted in the Supplemental Materials’ Figure 8. The vari-
ability of evidence units gained per second ςk increased as BR
variance grew. Evidence units gained per second, drift rate δk,
was found to decrease both with larger contrast noise and larger
BR. The parameter estimates seem to show a complex interaction
effect of BR and contrast noise on non-decision time τk. However,
the results from Model 2 will indicate that Model 1 is suffi-
ciently misspecified that this interaction cannot be interpreted in
a meaningful way.

3.2. MODEL 2: INDIVIDUAL DIFFERENCES
The marginal posterior distributions of the condition-level
parameters are shown in Figure 8 of the Supplementary Materials.
At the condition level, the effects of the experimental manipula-
tions on drift rate and the diffusion coefficient remain similar to
the results of Model 1: Mean drift rates νk were found to decrease
as BR variance grew, smaller mean drift rates were observed in
the high visual noise condition, and mean diffusion coefficients
μk increased as BR variance grew. Main effects on the condition-
level non-decision time not clearly observable in Model 1 were
found in Model 2. Mean non-decision time θk was slow when the
BR variance was high, and participants were estimated to have
quick non-decision times in low visual noise conditions.

The complex interactive pattern of non-decision times
obtained in Model 1 no longer appears.

By adding subject-level parameters, the current model not
only provides a clearer picture of condition-level behavior of all
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participants, but describes the individual differences of the par-
ticipants modeled by the subject-level parameters, δjk, ςjk, and
τjk. Posterior distributions for the subject-level parameters of the
easiest condition (±30◦ BR and 30% noise) are provided in the
Supplemental Materials’ Figure 9. Due to subject-level parame-
ters deviating from the condition-level parameter’s means, this
model is able to predict within-sample data well-compared to the
previous model. Percent variances explained (R2

pred) of correct-
RT subject medians by within-sample posterior prediction are
provided in Table 1. Model 2 explains at least 86.3% of median
correct-RT between-subject variance in each condition.

3.3. MODEL 3: INDIVIDUAL DIFFERENCES WITH NEURAL CORRELATES
The results of Model 2 clearly demonstrate differences between
participants’ cognition in the perceptual decision making task. We
were further able to explain the differences in the cognitive vari-
ables using the neural data: Model 3 was fit in a similar manner to
Model 2, but additionally included principal components of the
steady-state PLIs as regressors, as represented by the vector xj, on
the subject-level model parameters.

We generated in-sample posterior predictive distributions
using condition-level parameter posterior distributions (as
opposed to in-sample posterior prediction from subject-level
parameters), PLI coefficient posterior distributions, and PLI
variables from each subject to find principal components that
best predicted correct RT distributions. A plot of in-sample
unexplained median correct-RT between-subject variance as a
decreasing function of number of principal component (PC)
regressors included in the model is provided in Figure 10 of
the Supplemental Materials. Based on this analysis, PCs 2, 4,
and 7 of both the noise and signal sets were tested further to
find the model that best predicted out-of-sample RT of correct
responses.

Model 3 was the model that best predicted out-of-sample
correct-RT distributions by using noise component 2 and signal
component 7 as exogenous PLI regressors on the diffusion model
parameters. It should be noted that the amount of variance of the
original PLI data explained by each PC is not reflective of each
PC’s out-of-sample predictive power, just as the amount of vari-
ance of the original data explained by each PC is not reflective
of its contribution to the model (Jolliffe, 1982). A table of per-
cent between-subject variance of median correct-RT explained
(R2

pred) by out-of-sample prediction is provided in Table 1. Tables
of percent between-subject variance of mean, 25th percentile, and
75th percentile correct-RT explained by out-of-sample prediction
are provided in the Supplemental Materials. A new paricipant’s
correct-RT distribution in each condition can be more accurately
predicted using the participant’s EEG in Model 3’s framework
than by using Model 1’s or Model 2’s framework. 31.9% of
the between-subject variance of the easiest condition’s median
correct-RT is explained by out-of-sample prediction.

To aid in interpretation, the posterior distributions of the
regression coefficients for each PC were projected into the PLI
coefficient space by multiplying the matrix of PC coefficient pos-
terior samples G by the inverse-weight matrix V from the PCA
algorithm which projects the PCs into the PLI data space. The
result GV are samples from the posterior distributions of the
regression coefficients for each PLI variable. This transformation
was performed once for each of the noise and signal variable sets.

The posterior distributions of the signal PLI coefficients are
provided in Figure 6 with means, medians and 95% and 99%
credible intervals. From the PC coefficient and PLI coefficient
posteriors, it was clear that there is a complex signal response
at multiple frequencies and cortical locations on the diffusion
coefficient and non-decision time. Participants with larger signal
occipital 15 and 45 Hz PLIs are expected to have smaller variances

Table 1 | Percentage of between-subject variance in correct-RT medians explained by in-sample and out-of-sample prediction (R2
pred ) for each

experimental condition.

Rotation Noise In-sample prediction Out-of-sample prediction

M1 M2 M3 M1 M2 M3

±30◦ 30% −0.1% 94.3% 95.0% −13.5% −11.8% 31.9%

±35◦ 30% −0.1% 95.6% 95.8% −12.3% −11.7% 27.6%

±40◦ 30% −0.5% 92.2% 92.1% −12.5% −11.5% 19.9%

±30◦ 45% −1.2% 86.3% 87.4% −15.1% −11.7% 29.4%

±35◦ 45% −0.2% 92.3% 91.6% −12.0% −13.6% 22.8%

±40◦ 45% 0.2% 92.6% 91.9% −11.9% −15.0% 28.0%

±30◦ 60% −0.7% 93.1% 92.8% −12.9% −13.0% 18.6%

±35◦ 60% −2.3% 92.5% 92.6% −14.7% −13.5% 13.3%

±40◦ 60% −0.6% 90.9% 91.2% −13.8% −18.0% 26.2%

The in-sample predictive ability of the no-individual differences Model 1 was unsurprisingly poor, while the in-sample predictive ability of individual differences

models (with and without EEG regressors, Model 2 and Model 3, respectively) explained most of the variance of correct-RT subject medians. Out-of-sample

prediction was performed by using an iterative leave-one-subject-out procedure, first by obtaining posterior distribution estimates for each parameter by modeling

all but one participant’s behavior and EEG data and then estimating the left-out participant’s correct-RT distribution using the resulting model fit and the left-out

participant’s EEG. Models without EEG regressors (i.e., Model 1 and Model 2) are poor choices for new participant behavior prediction. The model with a noise

principal component and a signal principal component of the phase-locked EEG as covariates of diffusion model parameters (Model 3) more accurately predicts new

participants’ correct-RT behavior. Negative values indicate overdispersion of the model prediction (due to posterior uncertainty) relative to the real data.
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in the evidence accumulation process (diffusion coefficients) than
those participants with smaller occipital signal PLIs. However,
the opposite effect is found in the frontal electrodes with large
15 and 45 Hz PLIs being associated with larger evidence accu-
mulation variances. Larger signal responses at 30 and 45 Hz in
parietal electrodes is also associated with larger diffusion coeffi-
cients. The effect of signal response on non-decision time is also
complex but closely related to the effect of signal response on the
diffusion coefficient. No evidence of an association between par-
ticipants’ differences in signal response to differences in evidence
accumulation rates (drift rates) was found.

The posterior distributions of the noise PLI coefficients from
the response interval are provided in Figure 7. The posterior dis-
tributions of the noise PLI coefficients from the noise interval are
provided in the Supplemental Materials’ Figure 11. In all noise
harmonic frequencies during the noise interval and most har-
monic frequencies (16, 24, 32, and 48 Hz) during the response
interval, those subjects who had smaller PLIs at all electrode loca-
tions had faster evidence accumulation rates (drift rates). This
finding suggests that those subjects who better suppressed the
stimulus noise accumulated correct evidence faster. Furthermore,
a similar effect was found on non-decision time. Noise suppres-
sion in the harmonic frequencies was associated with smaller

non-decision times across subjects. However, smaller PLIs at 8 Hz
were associated with slower evidence accumulation and faster
non-decision times. Looking at these effects as a whole, those
subjects with more suppressed responses to the noise at all fre-
quencies had larger drift rates and smaller non-decision times
leading to faster, more accurate responses. As a plausible but
oversimplified example, a participant whose PLI responses at all
frequencies and locations was suppressed 0.2 units more than
another participant during both the noise and response intervals
is expected to accumulate 0.418 evidence units per second faster
than another participant and have a 70 ms faster non-decision
time. There was little to no evidence of an effect of individual
variation in brain responses to noise on within-trial evidence
accumulation variability (the diffusion coefficient).

4. DISCUSSION
We have shown that a Bayesian diffusion model framework with
hierarchical participant-level parameters is useful in describ-
ing individual differences in the rate of evidence accumulation,
variance in evidence accumulation process, and preprocessing
and/or motor response time in a novel perceptual decision mak-
ing paradigm. Assuming the model describes the relationship
between cognition and behavior sufficiently well, we are able to
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FIGURE 6 | The marginal posterior distributions of the signal PLI

coefficients. I.e., the effects of signal enhancement, as measured by a
steady-state phase-locking index (PLI), on the evidence accumulation rate
(drift rate; in evidence units per second), variance in the evidence
accumulation process (the diffusion coefficient; in evidence units per
second), and non-decision time during the response interval (in seconds).
Dark blue posterior density lines indicate 95% credible intervals while smaller
teal lines indicate 99% credible intervals. Small horizontal green lines
embedded in density curves indicate the median of the posterior

distributions while the orange crosses indicate posterior means. There is an
effect of signal response on the diffusion coefficient and non-decision time
that is complex across frequencies and scalp location. A participant whose
PLI responses at all locations and frequencies are 0.2 units greater than
another participant’s responses is expected to have 0.061 evidence units per
second larger evidence accumulation variances (where α = 1 evidence unit is
required to make a decision) and have 18 ms faster non-decision times,
leading to faster but less accurate responses. There was no evidence of an
effect of attention to the signal on evidence accumulation rate (the drift rate).
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FIGURE 7 | The marginal posterior distributions of the noise PLI

coefficients. I.e., the effects of noise suppression, as measured by a
steady-state phase-locking index (PLI), on the evidence accumulation rate
(drift rate; in evidence units per second), variance in the evidence
accumulation process (the diffusion coefficient; in evidence units per
second), and non-decision time (in seconds) during the response interval.
Dark blue lines indicate 95% credible intervals, smaller teal lines indicate
99% credible intervals, horizontal green lines indicate posterior medians, and
the orange exes indicate posterior means. At noise harmonic frequencies (16,
24, 32, and 48 Hz) during the response interval, those subjects who
suppressed noise had faster evidence accumulation rates; this effect was

found at all electrode groups. However, noise enhancement at 8 Hz was
associated with slower evidence accumulation. Furthermore, those subjects
who better suppressed noise at the same harmonic frequencies had faster
non-decision times. For example, a participant whose PLI responses were
suppressed 0.2 units more than another participant’s responses at all
locations and frequencies during the response interval is expected to
accumulate 0.288 evidence units per second faster (where α = 1 evidence
unit is required to make a decision) and have 48 ms faster non-decision
times, leading to faster and more correct responses. There was no evidence
of an effect of attention to the visual noise on variance in evidence
accumulation (the diffusion coefficient).

infer cognitive differences among participants. Furthermore, we
have shown that differences in participants’ attention as measured
by SSVEPs relate to some of these differences in participants’
cognition.

Individual differences in the rates of evidence accumula-
tion (drift rates) were partially explained by individual differ-
ences in noise suppression as measured by SSVEPs. Participants
who better suppressed noise at high frequencies during the
both the preparatory period (noise interval) and the decision
period (response interval) were able to accumulate correct evi-
dence faster, which led to more accurate, faster response times.
Furthermore, those individuals who better suppressed noise in
the same frequency bands and locations had faster non-decision
times (preprocessing and/or motor response speed). This effect
on non-decision time is hypothesized to be reflective of faster pre-
processing time in subjects who better suppressed noise since we
do not expect noise suppression to affect motor response speed.
Both findings suggest a role of noise suppression in beta and
gamma EEG frequency bands on the speed of evidence accu-
mulation and preprocessing prior to evidence accumulation in
perceptual decision making tasks.

Enhancement of signal was found to describe individual vari-
ation in “randomness” of evidence accumulation within trials (as
measured by the diffusion coefficient). Participants who did not
properly enhance signal in occipital, central, and pre-frontal elec-
trodes had the most variable evidence accumulation processes.
There is also evidence that a participant’s enhancement of sig-
nal may have affected their preprocessing time in a complex way
across frequencies and cortical locations. This suggests that sig-
nal enhancement in beta and gamma EEG frequency bands affect
within-trial evidence accumulation variance and preprocessing in
perceptual decision making.

In summary, from the results of the modeling procedure it
was found that some individual variation in evidence accumu-
lation speed (drift rate) is explained by noise suppression, some
individual variation in evidence accumulation variance (diffusion
coefficient) is explained by signal enhancement, and some indi-
vidual variation in non-decision time (presumably preprocess-
ing time) is explained by both noise suppression and signal
enhancement.

The usefulness of the model with SSVEP attention measures
as regressors is not only in its descriptive ability, but also in its
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predictive ability. New subject correct-RT behavior was not accu-
rately described by the model without individual differences nor
the model with individual differences. But by explicitly includ-
ing individual differences with neural covariates in hierarchical
models, the correct RT distributions of new subjects with known
neural measures are more accurately predicted. We expect the
addition of the phase-locking index of SSVEPs to be predictive
of behavior in any perceptual decision making paradigm, espe-
cially if used in a hierarchical Bayesian framework. Theoretically
the hierarchical EEG-diffusion model will also be able to predict
the PLI measures of a missing participant given a participant’s
behavioral data. We will explore the practicality of such predic-
tions in future studies. Possible applications of behavioral and
neural data prediction include: (a) the ability to interpolate data
from incomplete behavioral data sets (b) the ability to interpolate
data from incomplete neural data sets (c) more powerful statis-
tical inference through simultaneous accounting for changes in
behavior and neural data.

In the future for both hypothesis testing and response-RT pre-
diction, latent variables linearly or non-linearly related to the
EEG covariates can be included with the cognitive model in a
hierarchical Bayesian framework (see Vandekerckhove, 2014, for
details). The benefits of such an analysis would be: to choose
neural covariates maximally descriptive or predictive of the data,
choose electrodes and frequencies maximally descriptive or pre-
dictive of the data, reduce the number of covariates, and reduce
the multicollinearity of the covariates by assuming there exist
underlying variables related to multiple EEG covariates. In the
present study, the problems of multicollinearity and variable
overabundance were overcome with two principal component
analyses (PCAs). PCAs do not extract mixtures of the data which
are most descriptive or predictive of the model parameters but
instead extract mixtures of the data which are uncorrelated. A
shortcoming of this study is that we did not pick frequencies
and cortical locations that were maximally predictive of behav-
ior as exogenous variables. Cortical locations naively based upon
large non-focal groupings were chosen. Instead of performing
a non-Bayesian PCA before submitting the neural data to the
Bayesian algorithm, a linear mixture of neural data that best
describes the cognitive model parameters could be extracted from
the Bayesian algorithm itself, analogous to a partial least squares
regression in a non-Bayesian approach (see Krishnan et al., 2013,
for an example). In order to use this latent variable technique,
the model must be run on a training set using a subset of the
EEG data and then run on a test set to measure out-of-sample
model predictive ability. This would result in a data reduction
of the EEG that best predicts behavior in the context of the
model.
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