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Abstract

Perceptual decision making can be accounted for by drift-diffusion models,
a class of decision-making models that assume a stochastic accumulation of
evidence on each trial. Fitting response time and accuracy to a drift-diffusion
model produces evidence accumulation rate and non-decision time parameter
estimates that reflect cognitive processes. Our goal is to elucidate the effect
of attention on visual decision making. In this study, we show that measures
of attention obtained from simultaneous EEG recordings can explain per-
trial evidence accumulation rates and perceptual preprocessing times during
a visual decision making task. Models assuming linear relationships between
diffusion model parameters and EEG measures as external inputs were fit
in a single step in a hierarchical Bayesian framework. The EEG measures
were features of the evoked potential (EP) to the onset of a masking noise
and the onset of a task-relevant signal stimulus. Single-trial evoked EEG
responses, P200s to the onsets of visual noise and N200s to the onsets of visual
signal, explain single-trial evidence accumulation and preprocessing times.
Within-trial evidence accumulation variance was not found to be influenced
by attention to the signal or noise. Single-trial measures of attention lead
to better out-of-sample predictions of accuracy and correct reaction time
distributions for individual subjects.
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1. Introduction

There are many situations on the road when the driver of a vehicle must
decide to stop or accelerate through an intersection by observing a traffic
light. The presence of a green arrow for an adjacent lane (i.e. the distrac-
tor or “noise”) can be distracting for the driver whose light is red (i.e. the
“signal”). The presence of the distractor affects the reaction time and choice
of the driver. However the driver can suppress their attention to the green
arrow and/or attend to the correct red light in their lane. The decision to
stop or accelerate is an example of a perceptual decision. Perceptual decision
making is the process of making quick decisions based on objects’ features
observed with the senses. As shown in the stoplight example, attention is
highly influential in the perceptual decision making process. When distract-
ing objects exist in visual space, one must attend only to the relevant objects
and actively ignore distracting objects. Each time an individual reaches a
stop light, they will be more likely to make a safer decision if they suppress
distracting visual input and enhance relevant visual input.

The goal of this study was to evaluate whether attention could predict
different components of the decision making process on each trial of a visual
discrimination experiment. We make use of high-density electroencephalo-
graphic (EEG) recordings from the human scalp to find single-trial evoked
potentials (EPs) to the onset of visual signal and to the onset of a distrac-
tor (mask) to measure the deployment of attention to task-relevant features.
We found that on each trial, modulations of the evoked potentials by atten-
tion were predictive of specific components of a drift-diffusion model of the
decision making process.

1.1. Visual attention and decision making

Attention is beneficial for decision making because relevant features of
the environment can be preferentially processed to enhance the quality of
evidence. During visual tasks individuals may deploy different attention
strategies such as: enhancing the signal, suppressing external noise (distrac-
tors), or suppressing internal noise (Lu and Dosher, 1998; Dosher and Lu,
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2000). These strategies are thought to change based on the signal to noise
ratio of the stimulus, such that individuals will enhance sensory gain to both
signal and noise during periods of low noise and sharpen attention to only
signal during periods of high noise (Lu and Dosher, 1998), although specific
strategies have been shown to differ across subjects (Bridwell et al., 2013;
Krishnan et al., 2013; Nunez et al., 2015). Multiple groups have proposed
models of visual attention and decision making that yield diverse reaction
time and choice distributions dependent upon attentional load (Spieler et al.,
2000; Smith and Ratcliff, 2009). Attention can be deployed to the features
and/or location of a stimulus, and attention can benefit decision making
when the subject is cued to the location or features of the stimulus (Eriksen
and Hoffman, 1972; Shaw and Shaw, 1977; Davis and Graham, 1981).

Event-related potentials (ERPs) are trial-averaged EEG responses to ex-
ternal stimuli. Visual ERPs (also labeled Visual Evoked Potentials; VEPs)
have been shown to track visual attention to the onset of stimuli (Harter
and Aine, 1984; Luck et al., 2000). That is, amplitudes of the peaks of the
ERP waveform (i.e., ERP “components”) within certain millisecond-scale
time windows are shown to be larger when subjects encounter task-relevant
stimuli in the expected location in visual space. Two components of particu-
lar interest are the N1 (or N200 ) and P2 (or P200 ) components. The terms
N1 and P2 refer the order of negative and positive peaks in the time series
respectively, and the more general alternative names N200 and P200 refer to
their approximate latencies in milliseconds. Changes in N200 latencies have
been shown to correlate with attentional load (Callaway and Halliday, 1982),
and N200 measures have even been used in Brain-Computer Interfaces (BCI)
that make use of subjects’ attention to specific changing stimuli, such as let-
ters in a BCI speller (Hong et al., 2009). Findings in these trial-averaged
EEG (ERP) studies suggest that information is also available in single-trials
of EEG that can be used to evaluate the relationship between attention and
decision making. In this paper we will use the alternative names P200 and
N200 because 1) the exact time windows of components vary across studies,
2) components in this study were both localized to around 200 milliseconds,
and 3) components in this study were found on single-trials as opposed to in
the trial-average.

1.2. Behavioral models of decision making

Drift-diffusion models are a widely-used class of models used to jointly
predict subjects’ choices and reaction times (RT) during two-choice decision
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making (Stone, 1960; Ratcliff, 1978; Ratcliff and McKoon, 2008). “Neural”
drift-diffusion models have also successfully incorporated functional magnetic
resonance imaging (fMRI) and EEG recordings into hierarchical models of
choice-RT (e.g. Mulder et al., 2014; Turner et al., 2015; Nunez et al., 2015). In
this study, we use a hierarchical form of the diffusion model (Vandekerckhove
et al., 2011), allowing variability between participants and across conditions,
to predict and describe single-trial reaction times and accuracy during a
visual decision making task. While other similar models of choice-RT have
successfully predicted behavior during visual decision making, such as the
simpler linear ballistic accumulator model (Brown and Heathcote, 2008) or
a more complicated drift-diffusion model that intrinsically accounts for trial-
to-trial variability in parameters within subjects (Ratcliff, 1978; Ratcliff and
McKoon, 2008), we have chosen a diffusion model that allows us to test
specific predictions from models of attention (i.e. Smith and Ratcliff, 2009;
Lu and Dosher, 1998) while being simple-enough to fit in reasonable time
periods given the hierarchical form.

In the drift-diffusion model it is assumed that subjects accumulate ev-
idence for one choice over another (or a correct versus incorrect response,
as in this study) in a random walk evidence accumulation process with an
infinitesimal time step. That is, evidence Et accumulates following a Wiener
process (i.e. Brownian motion) with drift rate δ and instantaneous variance
ς2 (Ross, 2014) such that

dEt
dt
∼ N (δ, ς2) (1)

Thus the drift rate δ describes mean rate of evidence accumulation within a
trial and the diffusion coefficient ς influences the variance of evidence accu-
mulation within one trial, with the true variance of the current evidence at
any particular time t being ς2t. A graphical representation of the diffusion
model is provided in the middle panel of Figure 1.

A few other parameters describe a diffusion model. The boundary sepa-
ration α is equal to the amount of relative evidence required to make choice
A over choice B (or make a correct decision over an incorrect decision), and
the boundary separation has been shown to be manipulated by speed vs.
accuracy strategy trade-offs (Voss et al., 2004). The parameter that encodes
the starting position of evidence β reflects the bias towards one choice or
another (equal to .5 when modeling correct versus incorrect choices as in
this study). The non-decision time τ is equal to the amount of time within
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the reaction time of each trial that is not dedicated to the decision mak-
ing process. Typically non-decision time is assumed to be equal to the sum
of preprocessing time before the evidence accumulation process and motor
response time after a decision has been reached. The relative contribution
of these two non-decision times is not identifiable from behavior alone and
therefore is rarely explicitly modeled.

All three of the parameters related to evidence accumulation are not iden-
tifiable with behavioral data alone (i.e. drift rate δ, the diffusion coefficient
ς, and the boundary separation a). Only two of the three parameters can
be assumed to vary across subjects and trials (e.g. multiplying ς by two
and dividing both a and δ by two would result in the same fit of choice-RT)
(Ratcliff and McKoon, 2008; Wabersich and Vandekerckhove, 2014). Previ-
ous studies have typically chosen to fix the diffusion coefficient ς to 1 or 0.1
(Vandekerckhove et al., 2011; Wabersich and Vandekerckhove, 2014). How-
ever due to the predictions made by Dosher and Lu (2000), in that internal
noise is suppressed by attention to the signal, we choose to leave ς to vary.
The boundary separation α was fixed at 1 for all trials and subjects. Our
primary analysis focused on the trial-to-trial variability in the evidence ac-
cumulation process due to fluctuations in attention from trial-to-trial within
individuals. Although trial-to-trial speed-accuracy trade-offs can be experi-
mentally introduced to find neural correlates of the boundary separation (e.g.
van Maanen et al., 2011) or may exist due to per-trial performance feedback
(Dutilh et al., 2012), we have no reason to believe that the boundary separa-
tion will vary considerably from trial-to-trial within a subject due to changes
in attention. Moreover, all subjects were given the same accuracy instruction
to maintain similar accuracy vs. speed trade-offs across subjects.

1.3. Single-trial EEG measures of attention

EEG correlates of attention and decision making have been found using
classification methods. One group has shown that the amplitude of cer-
tain EEG components in the time domain track type and duration of two-
alternative forced choice responses and then showed that these components’
amplitudes tracked evidence accumulation rate (Philiastides and Sajda, 2006;
Ratcliff et al., 2009). However the EEG components in these studies were
found by finding the maximum predictors of the behavioral data and thus
had no a priori interpretation. Another group has found that that single-
trial amplitude in a few frequency bands, especially the 4-9 Hz theta band,
predicts evidence accumulation rates (van Vugt et al., 2012). However these
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oscillations were found using canonical correlation analysis (CCA; Calhoun
et al., 2001), a data driven algorithm that found any EEG channel mixtures
that contained correlations with the drift diffusion model parameters. While
the results were confirmed using cross validation, the set of EEG identified
by this method also did not have an a priori explanation. These studies point
us in directions of exploration and perform well at prediction, but we have
little information as to whether the EEG information reflected attention, the
decision process itself, or some other correlate of evidence accumulation. In
this study, we introduce a simple procedure that is informed by ERPs known
to be related to attention, and we make use of single-trial ERP estimates to
model behavior on single trials.

1.4. Hypothesized attention effects

An integrated model of visual attention, visual short term memory, and
perceptual decision making by Smith and Ratcliff (2009) predicts that atten-
tion operates on the encoding of the stimulus, and that enhanced encoding
increases drift rate during the decision making process. Furthermore, the
model predicts that visual encoding time (i.e. visual preprocessing) will be
reduced by attention which is reflected in the non-decision time parameter.
However, this model of visual attention only considers the detection of a
stimulus in an otherwise blank field—that is, a field with no visual noise.
Thus, it does not have predictions for the distinct processes of noise suppres-
sion and signal enhancement, as in the Perceptual Template Model (Lu and
Dosher, 1998). Signal enhancement during the evidence accumulation pro-
cess is predicted to reduce the diffusion coefficient ς because the mechanism
by which signal enhancement takes place, according to the Perceptual Tem-
plate Model, is additive internal noise reduction1 (Dosher and Lu, 2000);
this mechanism is predicted to be most effective in low noise conditions since
decreasing internal noise will lead to better processing of both the visual sig-
nal and external visual noise. External noise suppression, on the other hand,
is expected to reflect the encoding of the stimulus by manipulation of a per-
ceptual template, increasing the average rate of evidence accumulation δ by

1“In stimulus enhancement, attention increases the gain on the stimulus, which is
formally equivalent to reducing internal additive noise. This can improve performance
only in low external noise stimuli, since external noise is the limiting factor in high external
noise stimuli.” (Dosher and Lu, 2000, p. 1272)
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improving the overall quality of evidence on a trial. The Perceptual Template
Model predicts this mechanism is most effective in high noise conditions.

In a previous study we showed that individual differences in noise sup-
pression predicts individual differences in evidence accumulation rates and
non-decision times (Nunez et al., 2015). We also showed that differences
across individuals in signal enhancement predict individual differences in
non-decision times and evidence accumulation variance (i.e. the diffusion
coefficient), which we assume tracks internal noise in the subject. The find-
ings of signal enhancement effects on evidence accumulation variance and
noise suppression effects on evidence accumulation rate seem to correspond
closely to predictions made by the Perceptual Template Model. However the
Perceptual Template Model does not make explicit predictions about atten-
tion effects on non-decision times. The previous study did not explore how
trial-to-trial variation in attention affected trial-to-trial cognitive differences.
Individual differences in attention could be found that are not detected to be
changing within a subject, and/or trial-to-trial variability in attention could
occur that does not change across individuals. In this study, we show that
within-subject, trial-to-trial variability in attention to both noise and signal
predict variability in drift rate and non-decision times, corresponding closely
to predictions made by the model of Smith and Ratcliff (2009) that pre-
dicts speeded encoding time and increased evidence accumulation rate due
to enhanced attention. The two studies together suggest that within-trial
evidence accumulation variances ς varied across individuals, but we did not
find evidence that this measured varied within individuals due to changes in
trial-to-trial attention.

2. Methods

2.1. Experimental stimulus: Bar field orientation task

Reported in a previous study, behavioral and EEG data were collected
from a simple two-alternative forced choice task to test individual differences
in attention during visual decision making (Nunez et al., 2015). Here, we
reanalyze these data to explore per-trial attention effects on the decision
making process. Subjects were instructed on each trial to differentiate the
mean rotation of a field of small bars that were either oriented at 45 deg or
135 deg from horizontal on average. Two representative frames of the display
and the time course of a trial are provided in Figure 2. The circular field of
small bars was embedded in a square field of visual noise that was changing
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at 8 Hz. The bar field was flickering at 15 Hz. These frequencies were chosen
to evoke steady-state visual evoked potentials (SSVEPs), stimulus frequency-
tagged EEG responses that were useful in the previous study but will not
be used in this study. Stimuli were built and displayed using the MATLAB
Psychophysics toolbox (Psychtoolbox-2; www.psychtoolbox.org).

Subjects viewed each trial of the experimental stimulus on a monitor in
a dark room. Subjects sat 57 cm away from the monitor. The entire circular
field of small oriented bars was 9.5 cm in diameter, corresponding to a visual
angle of 9.5◦. Within each trial subjects first observed a black cross for 750 ms
in the center of the screen, on which they were instructed to maintain fixation
throughout the trial. Subjects then observed visual noise for 750 ms. This
time period of the stimulus will henceforth be referred to as cue interval, with
the onset EEG response at the beginning of this interval being the response
to the noise (or “distractor”) stimulus. Subjects then observed the circular
field of small oriented bars overlaid on the square field of visual noise for 1000
to 2000 ms and responded during this interval. Subjects were instructed to
respond as accurately as possible while providing a response during every
trial. Because evidence required to make a decision only appeared during
this time frame, the decision process was assumed to take place during this
interval. This interval is referred to as the response interval, and attentional
onset EEG measures during this time period are referred to as responses to
the signal stimulus. After the response interval the fixation cross was again
shown for 250 ms to alert the subjects that the trial was over and to collect
any delayed responses.

Three levels of variance of bar rotation and three levels of noise luminance
were used to modulate the task difficulty. However only the noise luminance
manipulation is relevant for the analysis presented here. Average luminance
of the noise was 50% and the luminance of the bars was 15%. In the low
noise condition, that luminance was drawn randomly at each pixel from a
uniform distribution of 35% to 65% luminance. In the medium and high noise
conditions, noise luminance was drawn randomly at each pixel from a uniform
distribution of 27.5% to 72.5% and 20% to 80% luminance respectively. Each
subject experienced 180 trials from each noise condition, interleaved, for a
total of 540 trials split evenly over 6 blocks. The total duration of the visual
experiment for each subject was approximately one hour and 15 minutes
including elective breaks between blocks. More details of the experiment can
be found in our previous publication (Nunez et al., 2015).

Behavioral and EEG data were collected concurrently from 17 subjects.
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Subjects performed accurately during the task. The across-subject mean,
standard deviation, and median of accuracy were 90.1%±5.8% , ỹ = 91.6%,
while the across-subject mean, standard deviation, and median of average
reaction time were 678±106 , t̃ = 670 ms. Individual differences in behavior
existed across subjects with the most accurate subject answering 98.3% of
trials correctly and the least accurate subject answering 78.5% of trials cor-
rectly. Two different subjects were the fastest and slowest with mean RTs of
502 ms and 866 ms respectively.

2.2. Single-trial EEG predictors

Electroencephalograms (EEG) were recorded using Electrical Geodesics,
Inc.’s high density 128-channel Geodesic Sensor Net and Advanced Neuro
Technology’s amplifier. Electrical activity from the scalp was recorded at a
sampling rate of 1024 samples per second with an online average reference
using Advanced Neuro Technology software. The EEG data was then im-
ported into MATLAB for offline analysis. Linear trends were removed from
the EEG data, and the data were band pass filtered to a 1 to 50 Hz window
using a high pass Butterworth filter (1 Hz pass band with a 1 dB ripple and
a 0.25 Hz stop band with 10 dB attenuation) and a low pass Butterworth
filter (50 Hz pass band with 1 dB ripple and a 60 Hz stop band with 10 dB
attenuation).

EEG artifact is broadly defined as data collected within EEG recordings
that does not originate from the brain. Electrical artifact can be biological
(e.g. from the muscles-EMG or from the arteries-EKG) or non-biological (e.g.
temporary electrode dislocations, DC shifts, or 60 Hz line noise). Contribu-
tion of muscle and electrical artifact was reduced in recordings by using an
extended Infomax Independent Component Analysis algorithm (ICA; Makeig
et al., 1996; Lee et al., 1999). ICA algorithms are used to find linear mixtures
of EEG data that relate to specific artifact. Components that are indicative
of artifact typically have high spatial frequency scalp topographies, high tem-
poral frequency or a 1/f frequency falloff, and are present either in only a few
trials or intermittently throughout the recording. These properties are not
shared by electrical signals from the brain as recorded on the scalp (Nunez
and Srinivasan, 2006). Using these metrics, components manually deemed
to reflect artifact were projected into EEG space and subtracted from the
raw data. Components deemed to be a mixture of artifact and brain activity
were kept. More information about using ICA to reduce the contribution of
artifact can be found in Jung et al. (2000).
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Event-related potential (ERP) components have been shown to index at-
tention (Callaway and Halliday, 1982; Harter and Aine, 1984; Luck et al.,
2000), in particular the P200 and N200 latencies and amplitudes, and these
values were used as independent measures of attention in the following analy-
ses. Event-related potentials (ERPs) are EEG responses that are time-locked
to a stimulus onset and are typically estimated by aligning and averaging
EEG responses across trials. They usually cannot be directly measured on
each trial from single electrodes. Raw EEG signals could be used as a single-
trial measures but typically have very low signal-to-noise ratios (SNR) for
task-specific brain responses. Since the goal of this analysis was to explore
single-trial effects of attention on visual decision making, a single-trial esti-
mate of the ERP was developed.

Because the signal-to-noise ratio (SNR) in ongoing EEG increases when
adjacent electrodes of relevant activity are summed (Parra et al., 2005), we
anticipated that the SNR of the response to the visual stimulus would be
boosted on individual trials by summing over the mixture of channels that
best described the average visual response. Traditional ERPs at each chan-
nel (represented by a matrix of size T × C where T is the length of a trial
in milliseconds and C is the number of EEG channels) were calculated sep-
arately for each subject. One ERP was calculated for the response to the
visual signal and another was found for the response to the visual noise by
averaging a random set of two-thirds of the trials across all conditions for
each subject in each window. This random set of trials was the same set
used as the training set for cross validation, to be discussed later. The test
sets of trials were not used to calculate the traditional ERPs.

Singular value decomposition (SVD; analogous to principal component
analysis) of the trial averages were then used to find linear mixtures of chan-
nels that explained the largest amount of the variance in the ERP data (i.e.
the first right-singular vectors v, explaining a percentage of variance from
39.4% to 91.9% and 45.0% to 93.2% across subjects in the cue and response
intervals respectively). The first right-singular vectors were then used as
weights to mix the raw EEG data into a brain response biased toward the
maximum response to the visual stimuli, yielding one time course of the EEG
per trial for both the cue and response intervals. A visual representation of
the simple procedure for a single trial is provided in Figure 3. The raw data
matrix E of dimension N×C was multiplied by the first right singular vector
v (a C×1 vector of channel weights) to obtain a N×1 vector Ev = e, which
could then be split up into epochs of length T × 1 representing the response

10



to the stimulus on each trial. Note that the voltage amplitudes of the ERP
measures calculated based on this method will differ from traditional single
electrode ERP amplitudes since the single-trial estimates are a weighted sum
of potentials over all electrodes.

Not only did this method boost the SNR of the EEG measures, but this
method also reduced EEG measures of size T ×C on each trial to one latent
variable that varies in time of size T ×1. Thus the correlation of the EEG as
inputs to the model was drastically reduced and the interpretability of model
parameters was increased compared to analyses with highly correlated model
inputs. The weight vector v for each subject in both the cue and response
intervals also yields a scalp map when the values of the weights are interpo-
lated between electrodes. Channel weights calculated using SVD on subject’s
ERPs to the noise onset (during the cue interval) are shown in topographic
plots for each subject in Figure 7. Channel weights calculated using SVD on
subject’s ERPs to the signal onset (during the response interval) are shown
in topographic plots for each subject in Figure 6. While raw EEG on single
trials from single electrodes may have large enough SNRs to be informative
for our analysis, we would not obtain an idea of the locus of activation or the
pattern of activation over the scalp.

We focused our analysis on the windows 150 to 275 ms post stimulus-
onset in the cue and response intervals. These windows were found to con-
tain P200 and N200 ERP components. On each trial, we measured the peak
positive and negative amplitudes, and the latency at which these peaks were
observed. We used these 8 single-trial measures to predict single-trial dif-
fusion model parameters. However in this paper we will focus only on the
results of models with 4 single-trial measures: the amplitude and latency of
the peak positive deflection (P200) during the cue interval and the ampli-
tude and latency of the peak negative deflection (N200) during the response
interval, because very weak evidence, if any, was found for the effects of the
other attention measures on diffusion model parameters in models with all 8
single-trial measures. It should be noted that single-trial measures of EEG
spectral responses at SSVEP frequencies (see Nunez et al., 2015) were briefly
explored but future methods must be developed to increase signal-to-noise
ratios of SSVEP measures on single-trials.

2.3. Hierarchical Bayesian models

Hierarchical models of visual decision making were assumed and placed
into a Bayesian framework. Bayesian methods yield a number of benefits

11



compared to other inferential techniques such as traditional maximum likeli-
hood methods. Rather than point estimates of parameters, Bayesian methods
provide entire distributions of the unknown parameters. Bayesian methods
also allow us to perform the model fitting procedure in a single step, main-
taining all uncertainty about each parameter through each hierarchical level
of the model.

One downside of Bayesian methods is that creating sampling algorithms
to find posterior distributions of Bayesian hierarchical models can be time
consuming and cumbersome. However Just Another Gibbs Sampler (JAGS;
Plummer et al., 2003) is a program that uses multiple sampling techniques to
find estimates of hierarchical models, only requiring the form of the model,
data, and initial values as input from the user. In order to find posterior dis-
tributions, we have used JAGS with an extension that adds a diffusion model
distribution (without intrinsic trial-to-trial variability) as one of the distri-
butions to be sampled from (Wabersich and Vandekerckhove, 2014). Similar
software packages to fit hierarchical diffusion models have been developed in-
dependently in other programming languages such as Python (Wiecki et al.,
2013).

In order to evaluate the benefit to prediction of adding EEG measures to
hierarchical diffusion models, three different models were compared. Model
3 assumed that evidence accumulation rates, evidence accumulation vari-
ances, and non-decision times were each equal to a linear combination of
EEG measures on each trial. Because we found no effect of the observed
single-trial EEG measures on single-trial evidence accumulation variances,
we also fit Model 2, where single-trial evidence accumulation rates and non-
decision times were influence by EEG, but single-trial evidence variances
were not. Model 1 did not assume any EEG contribution to any parameters.
This model assumed that parameters not varying with EEG would change
based on subject and condition, drawn from a condition level distribution.
Graphical representations of the hierarchical Bayesian models are provided
in Figure 4 following the convention of Lee and Wagenmakers (2014).

For Model 1 (Figure 4a), prior distributions were kept mostly uninforma-
tive (i.e. parameters of interest had prior distributions with large variances)
so that the analyses would be data-driven. The prior distributions of pa-
rameters for each subject j and condition k free from EEG influence had the
following prior and hyperprior structure

12



(
δjk | µ(δ)k, σ(δ)

)
∼ N (µ(δ)k, σ

2
(δ)) , µ(δ)k ∼ N (1.5, 42) ∈ (−9, 9), σ(δ) ∼ Γ(5, 0.20)(

τjk | µ(τ)k, σ(τ)
)
∼ N (µ(τ)k, σ

2
(τ)), µ(τ)k ∼ N (0.3, 12) ∈ (0, 3) , σ(τ) ∼ Γ(5, 0.05)(

ςjk | µ(ς)k, σ(ς)
)
∼ N (µ(ς)k, σ

2
(ς)) , µ(ς)k ∼ N (0.6, 22) ∈ (0, 4) , σ(ς) ∼ Γ(5, 0.05)

Where the normal distributions N are parameterized with mean and vari-
ance respectively and the gamma distributions Γ are parameterized with
shape and scale parameters respectively.

In Models 2 (Figure 4b) and 3 (Figure 4c), to ensure noninterference by
the prior distributions, uninformative priors were given for both the effects
γjk of EEG on the parameters of interest and the linear intercepts ηjk. Note
that the effect of EEG γjk is a vector with one element per EEG regressor
and each effect of EEG is assumed to be statistically independent from the
others. If a drift-diffusion model parameter was assumed to be equal to a
linear combination of EEG inputs then the following two lines replaced the
priors of the respective parameter above.(
ηjk | µ(η)k, σ(η)

)
∼ N (µ(η)k, σ

2
(η)) , µ(η)k ∼ N (0, 1002) , σ(η) ∼ Γ(5, 5)(

γjk | µ(γ)k, σ(γ)
)
∼ MVN (µ(γ)k, σ

2
(γ)I), µ(γ)k ∼ MVN (0, 1002I), σ(γ) ∼ Γ(5, 5)

In Models 2 and 3, the parameter on each trial was assumed to be equal
to a simple linear combination of the vector of single-trial EEG inputs xijk
on that trial i with ηjk and γjk as the intercept and slopes respectively:

δijk = η(δ)jk+γᵀ
(δ)jkxijk

τijk = η(τ)jk+γ
ᵀ
(τ)jkxijk

ςijk = η(ς)jk+γᵀ
(ς)jkxijk

Where the first two equations refer to the structure of Model 2 and all three
equations refer to the structure of Model 3. Note that the p ∗ 1 vector of
effects γjk of EEG on each parameter could include the intercept term ηjk
to create a (p + 1) ∗ 1 vector of effects γ∗

jk (and the EEG vector xijk would
include a value of 1 to be multiplied by the intercept term). We use this
notation in Figure 4 for simplicity.

Because not all trials are believed to actually contain a decision-making
process (i.e. the subject quickly presses a random button during a certain
percentage of trials reflecting a “fast guess”), reaction times below a certain
threshold were removed from analysis and cross-validation. Cutoff reaction
times were found for each subject by using an exponential moving average
of accuracy after sorting by reaction time (Vandekerckhove and Tuerlinckx,
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2007). The rejected reaction times were all below 511 ms with a mean cutoff
of 410 ms across subjects. This resulted in an average rejection rate of 1.4%
of trials across subjects with a maximum of 6.3% of trials rejected for one
subject and a minimum of 0.7% of trials rejected for 11 of the 17 subjects.

Each model was fit using JAGS with six Markov Chain Monte Carlo
(MCMC) chains run in parallel (Tange, 2011) of 52,000 samples each with
2,000 burn-in samples and a thinning parameter of 10 resulting in 5,000 pos-
terior samples in each chain. The posterior samples from each chain were
combined to form one posterior sample of 30,000 samples for each param-
eter. All three models converged as judged by R̂ being less than 1.02 for
all parameters in each model. R̂ is a statistic used to assess convergence of
MCMC algorithms (Gelman and Rubin, 1992).

Posterior distributions were found for each free parameter in the three
models. Credible intervals of the found posterior distributions were then
calculated to summarize the findings of each model. EEG regressor effects
were deemed to have weak evidence if the 95% credible interval between the
2.5th and 97.5th percentiles of the subject mean parameter µ(γ)j was non-
overlapping zero. Effects were deemed to have strong evidence if the 99%
credible interval between the 0.5th and 99.5th percentiles was non-overlapping
zero.

2.4. Cross-validation

All trials from all subjects were used during initial exploration of the data.
However once it was decided that the signal onset response was a candidate
predictor of drift rate, cross-validation was performed using a training and
test set of trials. Out-of-sample performance for both known and unknown
subjects were found by randomly assigning two-thirds of the trials from each
subject in a random sample of subjects (i.e. 13 of 17 subjects were chosen
at random) as the training set and one-third of the trials from the 13/17
subjects and all trials from the remaining 4/17 subjects as the test set. After
fitting the model with the training set, posterior predictive distributions of
the accuracy-RT data were found for each subject. Posterior predictive dis-
tributions were calculated by drawing from the subject-level posteriors of the
known subjects and by drawing from the condition-level posteriors of the un-
known subjects. The posterior predictive distributions were then compared
to the sample distribution of the test set.

In some recent papers, evaluation of models’ prediction ability has been
left to the readers with the aid of posterior predictive coverage plots (e.g. see
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figures in Supplementary Materials). Here we formally evaluate the similarity
of the posterior predictive distributions to the test samples via a “propor-
tion of variance explained” calculation. Specifically, we calculated R2

pred of
subjects’ accuracy and correct reaction time 25th percentiles, medians, and
75th percentiles across subjects. R2

pred is a measure of percentage variance in
a statistic T (e.g. accuracy, correct-RT median, etc.) explained by in-sample
or out-of-sample prediction. In this paper, R2

pred is defined as the percentage
of total between-subject variance of a statistic T explained by out-of-sample
or in-sample prediction. It is a function of the mean squared error of predic-
tion (MSEP) and the sample variance of the statistic T based on a sample
size of J = 13 or J = 4 subjects for known and unknown subject calcula-
tions respectively. This measure also allows comparisons across studies with
similar prediction goals. Mathematically, R2

pred is defined as

R2
pred = 1−

∑J
j=1(Tj − T(pred)j)2/(J − 1)∑J

j=1(Tj − T̄ )2/(J − 1)
= 1− MSEPT

V̂ar[T ]
(2)

3. Results

The single-trial EEG measures “regressed” on diffusion model parameters
were the peak positive and negative amplitudes and latencies (correspond-
ing to P200 and N200 peaks respectively) in the 150 to 275 ms windows
post noise-onset in the cue interval and post signal-onset in the response in-
terval. However the magnitude and latency of the peak negative deflection
(N200) in response to the noise stimulus and the magnitude and latency of
the peak positive deflection (P200) in response to the signal stimulus were
not informative (i.e. most condition-level effect posteriors of these measures
overlapped zero significantly in models with all P200 and N200 measures in-
cluded as regressors). For simplicity we only discuss results of models with
P200 measures following the noise stimulus in the cue interval and N200 mea-
sures following the signal stimulus in the response interval. Example single
trial amplitudes of these P200 and N200 peaks for Subject 12 are shown in
Figure 5.

Since no effects of explored measures were found on within-trial evidence
accumulation variance in Model 3 (i.e. posterior distributions of γ(ς)jk were
centered near zero), the only EEG effects that will be discussed are those
on evidence accumulation rate and non-decision time from a fit of Model
2. The posterior distributions of EEG effects on evidence accumulation rate
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γ(δ)jk and non-decision time γ(τ)jk did not differ significantly from Model 2
to Model 3. Moreover, Model 2 produced better out-of-sample prediction
than Model 3 for new subjects. A graphical example of the effects found
with Model 2 in two representative trials are given in Figure 1.

3.1. Intercept terms of evidence accumulation rate and non-decision time

The intercept term of each variable gives the value of each variable not
explained by a linear relationship to N200 and P200 amplitudes and latencies.
That is, the intercept gives the value of each parameter that remains constant
from trial to trial, with the between-trial variability of the parameter being
influenced by the changing trial-to-trial EEG measures. Model 2’s posterior
medians of the condition level evidence accumulation rate intercepts µ(ηδ)j

and non-decision time intercepts µ(ητ )j are reported. In low noise conditions,
evidence accumulation rate intercepts were 1.46 evidence units per second
(i.e. if there was no behavioral effect of EEG on each trial and no variance in
the evidence accumulation process, it would take the average subject 343 ms
to accumulate evidence since a decision is reached when α = 1 evidence unit
is accumulated and subjects start the evidence accumulation process with .5
evidence units). In medium and high noise conditions, evidence accumulation
rate intercepts were 1.30 and 0.86 evidence units per second respectively.
Non-decision time intercepts were 340 ms in low noise conditions, 425 ms in
medium noise conditions, and 440 ms in high noise conditions.

To understand the degree of influence of EEG on model parameters, ap-
proximate condition level evidence accumulation rates and non-decision times
were calculated and then compared to the intercept of the respective param-
eter. Taking the mean peak positive and peak negative amplitudes and la-
tencies across all subjects and trials in each noise condition and multiplying
by the median posterior of the effects, it was found that evidence accumulate
rate in low noise was 1.90 evidence units per second, 1.65 evidence units per
second in medium noise, and 1.35 evidence units per second in high noise. It
was also found that non-decision time was 393, 400, and 425 ms in the low,
medium, and high noise conditions. The intercepts of non-decision time thus
described approximately 86%, 94%, and 96% of the true condition means
in low, medium, high noise conditions respectively. However, the intercepts
of the drift rates only described approximately 77%, 79%, and 63% of the
true condition means in low, medium, and high noise conditions respectively.
While this gives the reader an idea of the strength of the influence of single-
trial EEG measures on the parameters, better evaluations of the degree of
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effects are presented below.

3.2. Effects of attention on non-decision time in low-noise conditions

Strong evidence was found to suggest that in low noise conditions single-
trial non-decision times τijk are positively linearly related to delays in the
EEG response to the visual signal as measured by the latency of the negative
peak (N200) following stimulus onset. A probability greater than 99% of the
condition-level effect being greater than zero in all subjects was found. This
relationship to an EEG signature 150-275 ms post stimulus onset suggests an
effect on preprocessing time rather than motor-response time. By exploring
the posterior distribution of the mean effect across-participants µ(γτ )j, it is
inferred that non-decision time increases 12 ms (the posterior median) when
there is a 40 ms increase in the latency of the single-trial negative peak (where
40 ms was the standard deviation across all trials and subjects) in the low
noise condition, with a 99% credible interval of 3 to 21 ms. Figure 6 shows
the per-subject effects of signal N200 latency on non-decision time in the
low noise condition. No evidence was found to suggest that the signal N200
latency affected non-decision time in medium nor high noise conditions. 95%
credible intervals for these increases in the subject mean non-decision time for
40 ms increased N200 delays were −9 to 4 ms and −8 to 3 ms respectively.
No evidence was found to suggest that attentional delay to the noise, the
noise P200 latency, affected non-decision time.

Weak evidence was found to suggest that magnitude of the response to
the stimulus affects non-decision time in the low noise condition. The pos-
terior median suggests that a 26.83 µV (the standard deviation) decrease in
magnitude of the negative peak (i.e. moves the negative peak towards zero)
leads to a 11 ms increase in non-decision time. The 95% credible interval of
this effect of N200 signal magnitude on non-decision time was a 2 to 21 ms.
No evidence was found to suggest that the magnitude in the medium and
high noise conditions affected non-decision time.

3.3. Effects of attention on evidence accumulation

Evidence was found to suggest that per-trial response to the visual signal
(measured by the negative peak, N200, amplitude) is positively correlated
with per-trial evidence accumulation rates δijk in each condition. In the low
noise condition, µ(γ(δ))j, which describes the across-subject mean of the effect
of negative peak on drift rate, was found to have a 95% credible interval of .02
to .34 evidence units per second increase (where it takes α = 1 evidence unit
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to make a decision) and a posterior median of .17 evidence units per second
increase for each magnitude increase (i.e. away from zero) of 26.83 µV , the
standard deviation of the negative peak. Given the same magnitude increase,
the posterior median of the effects in the medium and high noise conditions
were .13 and .14 evidence units per second respectively with 95% credible
intervals −.01 to .28 and 0 to .28 respectively.

Strong evidence was found to suggest that the magnitude of the positive
peak of the response to the visual noise during the cue interval affected the
future evidence accumulation rate in the medium noise and possibly high
noise conditions. The median of the posterior distribution of the condition-
level effect was .20 evidence units per second when there was a 27.67 µV
increase, the standard deviation of the peak magnitude. A 99% credible
interval of this effect was .04 to .32 evidence units per second. Figure 7
shows the effects of the noise P200 amplitudes on specific subjects’ single-
trial drift rates in the medium noise condition. The probability of there
being an effect of this P200 amplitude during the cue interval in the high
noise condition was 94.6% (i.e. the amount of the posterior density of the
condition-level effect above zero). The median of the posterior distribution
of this effect was .09 evidence units per second with a 95% credible interval
of −.02 to .22 evidence units per second when there is a 27.67 µV increase
in a high noise trial.

3.4. Cross-validation

In-sample and out-of-sample posterior predictive coverage plots of correct-
RT distributions for each condition and subject are provided in the Supple-
mentary Materials. All three models perform well at predicting correct-RT
distributions and overall accuracy of training data (i.e. in-sample prediction;
see Table 3 and Discussion section). However by cross-validation we found
that the addition of single-trial EEG measures of attentional onset improved
out-of-sample prediction of accuracy and correct reaction time distributions
of known subjects (i.e. those subjects who had 2/3 of their trials used in the
training set). R2

pred indicates the percentage of variance explained by predic-
tion in the given statistic across subjects. Table 1 contains R2

pred values for
accuracy as well as summary statistics of correct-RT distributions of known
subjects. Prediction was improved when using Model 3 for these subjects
with at least 77.3% of variance in correct-RT medians being explained by
out-of-sample prediction, but Model 2 performed almost as well in compari-
son to Model 1, the model without single-trial EEG inputs. Model 2 was able
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to predict at least 76.3% of the variance in correct-RT medians while Model
1 was able to predict at least 74.5% of the variance in correct-RT medians.
In the low noise condition, Model 2 did not improve upon Model 1’s expla-
nation of variance in subject-level accuracy but better predicted accuracy in
the other two conditions.

Larger gains in out-of-sample prediction were found for unknown subjects
(i.e. those subjects who were not used in the training set). These improve-
ments were particularly pronounced in the low noise condition. Model 2
outperformed Model 3, which outperformed Model 1 in turn, as shown in
Table 2. From these results it is clear that Model 2 was the best model
for out-of-sample prediction overall, especially for new subjects. In the low
noise condition, Model 2 was able to explain 22.1% of between-subject vari-
ance in correct-RT 25th percentiles in the low-noise condition while Model 1
was not able to predict any between-subject variance in this measure. While
the included single-trial EEG measures in these type of models do not per-
form as well as new subject prediction when subject-average EEG measures
of attention are included (Nunez et al., 2015), single-trial EEG does improve
prediction. The improvements in R2

pred across models suggest that it is possi-
ble that similar models with more single-trial measures of EEG could explain
new subjects’ accuracy and correct-RT distributions.

3.5. P200 and N200 localizations

Both the subject-average P200 and N200 components were localized in
time and space. All single-trial P200 and N200 amplitudes and latencies
(i.e. single-trial peak positive and negative amplitudes 150 to 275 ms in
the noise and response interval respectively) were averaged across trials for
each subject. Localization in time and on the brain are based on these
across-trial averages. The subject mean and standard deviation of the P200
latency during the cue interval was 220±12 ms while the mean and standard
deviation the of N200 latency during the response interval was 217 ± 6 ms.
Although these latencies differ slightly from traditional P2 and N1 findings
(Luck et al., 2000), when viewing the event-related waveforms over all trials
it is clear that the P2 and N1 are influenced by the single-trial measures.
As an example, every single-trial evoked response of Subject 12 to the noise
and signal are shown in Figure 5, sorted by peak P200 amplitude in the cue
interval and sorted by peak N200 amplitude in the response interval. The
P200 and N200 latencies of this subject correspond to traditional P2 and N1
components.
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While EEG localization is an inexact process that is unsolvable with-
out additional assumptions, the surface Laplacian has been shown to match
closely to simulated cortical activity using forward models (i.e the mapping
of cortical activity to scalp potentials) and have shown consistent results
when used with real EEG data (Nunez and Srinivasan, 2006). Unlike 3D so-
lutions, projections to the surface of the cortex (more accurately, the dura)
are theoretically solvable, and have been used with success in past studies
(see Nunez et al., 1994, for an example).

In this study we have found surface spline-Laplacians (Nunez and Pil-
green, 1991) on the realistic MNI average scalp (Deng et al., 2012) of the
mean positive peak during the cue interval (the P200) and the mean nega-
tive peak during the response interval (the N200) by averaging over trials and
subjects. The surface Laplacians were then projected onto one subject’s cor-
tical surface using Tikhonov (L2) regularization and a Finite Element (FE;
Pommier and Renard, 2005) forward model to the MNI 151 average head,
maintaining similar distributions of activity of the surface Laplacians on the
cortical surface. The subject’s brain was then labeled using the Destrieux
cortical atlas (Fischl et al., 2004). Cortical topographic maps of both peaks
are given in Figure 8. Because we expect the majority of the Laplacian
to originate from superficial gyri (Nunez and Srinivasan, 2006), we have lo-
calized both the positive and negative peaks only to maximally active gyri.
This localization suggested that both the P200 and N200 were in the follow-
ing extrastriate and parietal cortical locations: right and left middle occipital
gyri, right and left superior parietal gyri, right and left angular gyri, the left
occipital inferior gyrus, the right occipital superior gyrus, and the left tem-
poral superior gyrus. Although we should note that the exact localization
must have some errors due to between-subject variance in cortex and head
shape and between-subject variance in tissue properties.

Brain regions found using this cortical-Laplacian method point to activ-
ity in early dorsal and ventral pathway regions associated with visual atten-
tion (Desimone and Duncan, 1995; Corbetta and Shulman, 2002; Buschman
and Miller, 2007) and decision making (Mulder et al., 2014). Corroborating
our findings, White et al. (2014) found that blood-oxygen-level dependent
(BOLD) activity in the right temporal superior gyrus, right angular gyrus,
and areas in the right lateral occipital cortex (e.g. the right middle occipital
gyrus) correlated with non-decision time during a simple visual and auditory
decision making task. It was hypothesized that this activity was due to motor
preparation time instead of visual preprocessing time (White et al., 2014);
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however the time-scale of BOLD signals does not provide additional knowl-
edge to separate visual preprocessing time from motor preparation time. In-
formed by EEG, BOLD signals associated with evidence accumulation rates
have been previously localized to right and left superior temporal gyri and
lateral occipital cortical areas, thought to correspond to early bottom-up and
late top-down decision making processes respectively during a visual face/car
discrimination task (Philiastides and Sajda, 2007). The right and left mid-
dle occipital gyri have also previously been shown to contribute to evidence
accumulation rates during a random dot motion task (Turner et al., 2015).

4. Discussion

4.1. Attention influences perceptual decision making on each trial

The results of this study suggest that fluctuations in attention to a vi-
sual signal accounts for some of the trial-to-trial variability in the brain’s
speed of evidence accumulation on each trial in each condition. There is also
evidence to suggest that increased response to the competing visual noise in-
creases the brain’s speed of evidence accumulation, but only in medium and
high noise conditions. Although a simple explanation of this effect would
be differences in trial-to-trial arousal, we note that the effect only occurs in
medium-noise and high-noise conditions. We have previously found evidence
that noise suppression during the cue interval predicts enhanced drift rates
based on the subject-average SSVEP responses in these data (Nunez et al.,
2015). Thus, our effect may reflect the attention the subject places on the
cue, which determines whether to engage mechanisms of noise suppression,
but we could not directly assess this possibility as new methods must be
developed to measure SSVEPs on single trials. This would reflect a hypoth-
esis based on the Perceptual Template Model that predicts that subjects will
suppress attention to visual distractors during tasks of high visual noise (Lu
and Dosher, 1998).

We assume that the effect of N200 latency on non-decision time during
the response interval is on preprocessing time instead of motor response time.
There was no a priori reason to believe that an attention effect that takes
place 150-275 ms after stimulus onset would affect the speed of efferent sig-
nals to the muscle, given that the response times were at least 500 ms. These
findings lead us to conclude that the effect of attention in response to the
signal in low noise conditions is to reduce preprocessing delay time. This
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appears consistent with predictions of signal enhancement in low-noise con-
ditions in the Perceptual Template Model. However, we note there is not a
perfect equality between N200 latency and preprocessing time (the condition
and subject-level coefficient posteriors are not centered on 1). And the iden-
tification of both preprocessing time and motor response time is not possible
with a drift-diffusion model fit without additional assumptions or external
inputs such as EEG.

Reaction time (RT) and choice behavior during visual decision making
tasks are well characterized by models that assume a continuous stochastic
accumulation of evidence. And many observations of increasing spike-rates
of single neuron action potentials lend support to this stochastic theory of ev-
idence accumulation on a neural level (Shadlen and Newsome, 1996, 2001).
Recently some macroscopic recordings of the cortex have shown that in-
creasing EEG potentials ramping up to P300 amplitudes are correlates of
the stochastic accumulation of evidence (O’Connell et al., 2012; Philiastides
et al., 2014; Twomey et al., 2015). It has been hypothesized that this EEG
data reflects the evidence accumulation process itself (or a mixture of this
process with other decision-making correlates) and not a correlated measure
such as top-down attention. This hypothesis leads to the natural prediction
that single-trial drift rates are explained by single-trial P300 slopes. However
within a small region of the cortex, neurons will have diverse firing patterns
during the decision making process, only some of which are observed to have
increasing spiking-rate behavior indicative of stochastic evidence accumula-
tion (Meister et al., 2013). The properties of volume conduction through the
cortex, skull, and skin only allow for synchronous post-synaptic potentials
to be observed at the scalp (Nunez and Srinivasan, 2006; Buzsaki, 2006).
Therefore an increasing spike-rate as observed on the single-neuron level is
not likely to be observed as an increasing waveform in EEG recorded from
the scalp. We also would expect the evidence accumulation process to ter-
minate before the response time since a portion of the response time must
be dedicated to the motor response after the decision is made. This may not
be the case for the ramping P300 waveform on single-trials even though it is
predictive of model parameters (Philiastides et al., 2014). If the stochastic
evidence accumulation process was truly reflected in the ramping of EEG, a
testable prediction would be that the variance around the mean rate of the
P300 ramp on each trial would be linearly related to the diffusion coefficient
ς, in addition to single-trial P300 slopes being linearly related to the drift rate
δ. There are many EEG measures thought to be related to attention such as
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event related potential (ERP) components, power in certain frequency bands,
and steady-state visual evoked potential (SSVEP) responses. It is likely that
EEG measures that share similar properties with stochastic evidence accu-
mulation processes are in fact due to these correlates of attention or other
forms of cortical processing that can influence the decision making process.

4.2. External predictors allow for trial level estimation of diffusion model
parameters

The Wiener distribution (i.e. the diffusion model) used in this study does
not incorporate trial-to-trial variability in drift rates within the probability
density function as assumed by Ratcliff (1978). Instead we assume that
each trial’s drift rate is exactly equal to a linear function of EEG data and
use an evidence accumulation likelihood function that does not assume drift
rates vary trial-to-trial by any other means. Per-trial non-decision times and
diffusion coefficients were also assumed to be exactly equal to linear functions
of EEG data.

Per trial estimates of diffusion model parameters cannot be obtained with-
out imposing constraints or including external inputs. In this study, we have
shown that the single-trial P200 and N200 attention measures can be used
to discover per trial estimates of all three free parameters, non-decision time,
drift rate, and the diffusion coefficient. Non-decision time, the drift rate, and
the evidence boundary could also be modeled as per trial estimates of external
inputs, as would be useful in other speeded reaction time tasks where exter-
nal per-trial physiological measurements are available. Other possible per-
trial external inputs that could be used include: magnetoencephalographic
(MEG) measures, functional magnetic resonance imaging (fMRI) measures,
physiological measurements such as galvanic skin response (GSR), and near
infrared spectroscopy (NIRS), where each modality may have multiple ex-
ternal inputs (e.g. multiple linear EEG regressors of single-trial parameters,
as in this study). The more external inputs correlated with single-trial pa-
rameters included in the model, the better the single-trial estimate of the
parameters will be. This will allow decision model researchers to better ex-
plore the efficacy of the diffusion model by comparing single-trial estimates
of parameters.

4.3. Behavior prediction and BCI applications

We have observed that single-trial measures of EEG in a hierarchical
Bayesian approach to decision-making modeling improves overall accuracy
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and correct-RT distribution prediction for subjects with observed behav-
ior. This paradigm also lead to significant improvement in overall accuracy
and correct-RT distribution prediction for those subjects whose behavior
was missing. That is, we have shown that a new subject’s accuracy and
correct-RT distributions can be predicted when only their single-trial EEG
is collected, given that other subjects’ EEG and behavior has been analyzed.
If the goal of a future project is solely prediction (and no explanation of
the cognitive or neural process is desired, as was in this paper), a whole
host of single-trial EEG measures could be included in a hierarchical model
of decision making, using perhaps a simpler model of decision making such
as the linear ballistic accumulator model to ease analysis (e.g. Forstmann
et al., 2008; Ho et al., 2009; van Maanen et al., 2011; Rodriguez et al., 2015)
or a more complicated model to improve prediction. The set of single-trial
measures could include: ERP-like components as we discussed in this paper,
measures of evoked amplitudes in certain frequency bands, and measures of
steady-state visual evoked potentials.

However, as observed in Table 3, we have not shown prediction of re-
action times for when subjects committed errors because 1) few errors were
committed by the subjects in the presented data and 2) the type of model
we used has been shown to explain incorrect-RT distributions well only when
intrinsic trial-to-trial variability in evidence accumulation rates (as opposed
to extrinsic due to neural regressors, for which it has not been shown) is in-
cluded in the likelihood function (Ratcliff, 1978; Ratcliff and McKoon, 2008).
In future work we plan to compare the predictive ability of more compli-
cated models containing both intrinsic trial-to-trial variability and extrinsic
trial-to-trial variability in evidence accumulation rate due to external neural
measures.

The prediction ability of the presented models for accuracy and correct-
RT distributions may have implications for Brain-Computer Interface (BCI)
frameworks, especially in paradigms which attempt to enhance a participant’s
visual attention to particular task to improve reaction time. To maximize
prediction, every EEG attention measure should be included, and the pre-
dictors that offer the best out-of-sample prediction within initial K-fold val-
idation sets should be included. After collection of behavior and EEG from
a few participants and a hierarchical Bayesian analysis of the data, later
participants’ single-trial preprocessing times or evidence accumulation rates
could be predicted using only single-trial EEG measures. Conceivably this
would allow for trial-by-trial intervention in order to enhance a participant’s
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attention during the task, perhaps using neural feedback (e.g. via direct
current stimulation or transcranial magnetic stimulation) during those trials
in which a participant is predicted to be slow in their response because of a
small evidence accumulation rate (e.g. when an N200 magnitude is small)
or a slow preprocessing time (e.g. when an N200 latency is long). Although
whether the participant could use such feedback in time to affect reaction
time and accuracy remains to be tested.

4.4. Neurocognitive models

The term “neurocognitive” has been used to describe the recent trend
of combining mathematical behavioral models and observations of brain be-
havior to explain and predict perceptual decision making (Palmeri et al.,
2014). The usefulness of combining behavioral models and neural dynam-
ics has been motivated on theoretical grounds. Behavioral models suggest
links between subject behavior and cognition while laboratory observation
and neuroimaging can suggest links between neural dynamics and cognition.
The combination of these methods then provides a predictive chain of neural
dynamics, cognition, and behavior. Another obvious benefit is the inference
gain when predicting missing data. That is, we will be able to better predict
behavior when brain activity is available. This is especially true when us-
ing hierarchical Bayesian models as they maintain uncertainty in estimates
through different levels of the analysis (Vandekerckhove et al., 2011; Turner
et al., 2013). While there are a variety of methods using cognitive models
to find cognitive correlates in the brain dynamics (see Turner et al., 2016,
for a review of these methods), some studies do not further constrain the
cognitive models by informing those models with known neural links to spe-
cific cognitive processes. In this paper, and our previous study of individual
differences (Nunez et al., 2015), we demonstrate another important use of
neural data in cognitive models. Independent neural measures of cognitive
processes, such as attention, can be used to better understand how cognition
influences the mechanisms of behavior, furthering explanation and prediction
of the cognitive process.

Data and code sharing

Pre-calculated EEG measures, raw behavioral data, MATLAB stimulus
code, JAGS code, and an example single-trial EEG R script are available
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upon request and in the following repository (as of February 2016) if their
use is properly cited.

https://github.com/mdnunez/mcntoolbox/
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Figures



Prediction of new data from known subjects

Model 1 Model 2 Model 3
Comparison EEG-δ,τ EEG-δ,τ ,ς

L
ow

25th t1 Percentile 81.6% 85.2% 85.6%
t1 Median 74.5% 76.3% 77.3%

75th t1 Percentile 60.2% 63.3% 63.8%
Accuracy 24.5% 20.8% 27.7%

M
ed

iu
m

25th t1 Percentile 84.1% 85.1% 86.1%
t1 Median 86.8% 87.6% 88.9%

75th t1 Percentile 63.1% 68.2% 69.3%
Accuracy 58.1% 63.5% 63.5%

H
ig

h

25th t1 Percentile 73.0% 76.4% 76.6%
t1 Median 77.4% 76.8% 77.8%

75th t1 Percentile 71.0% 74.2% 74.2%
Accuracy 46.3% 48.9% 51.3%

Table 1: Percentage of across-subject variance explained by out-of-sample prediction
(R2

pred) for accuracy and summary statistics of correct-RT distributions of those sub-
jects’ that were included in the training set. 13 of the subjects’ data were split into
2/3 training and 1/3 test sets. Posterior predictive distributions that predicted test set
behavior were generated for 13 of the subjects by drawing from posterior distributions
generated by the training set. In the Low, Medium, and High noise conditions, the 25th,
50th (the median), and 75th percentiles and means were predicted reasonably well by the
model without single-trial measures of EEG, Model 1. However including single-trial mea-
sures of EEG improved prediction of correct-RT distributions, especially in the Low noise
condition, with Model 3 (which assumes evidence accumulation rate, non-decision time,
and evidence accumulation variance vary with EEG per-trial) only slightly outperforming
Model 2 (which assumes evidence accumulation rate and non-decision time vary with EEG
per-trial).



Figure 1: Two trials of Subject 10’s SVD weighted EEG (Top and Bottom with bounds
−85 to 85 µV ) and representations of this subject’s evidence accumulation process on 6
low noise trials (Middle). Evidence for a correct response in one example trial (denoted by
the red line) first remains neutral during an initial period of visual preprocessing time τpre.
Then evidence is accumulated with an instantaneous evidence accumulation rate of mean
δ (the drift rate) and standard deviation ς (the diffusion coefficient) via a Wiener process.
The subject acquires either α = 1 evidence unit or 0 evidence units to make a correct
or incorrect decision respectively. After enough evidence is reached for either decision,
motor response time τmotor explains the remainder of that trial’s observed reaction time.
The 85th and 15th percentiles of Subject 10’s single-trial drift rates δi,10,1 in the low noise
condition are shown as orange and green vectors, such that it would take 253 and 299
ms respectively to accumulate the .5 evidence accumulation units need to make a correct
decision if there was no variance in the accumulation process. The larger drift rate is
a linear function of the larger single-trial N200 amplitude (**), while the smaller drift
rate is a linear function of the smaller N200 amplitude (*). The scalp activation (SVD
weights multiplied by one trial’s N200 amplitude) of this subject’s response to the visual
signal ranges from −13 to 13 µV on both trials. The two dark blue and red evidence time
courses were randomly generated trials with the larger drift rate. The three dotted, light
blue evidence time courses were randomly generated trials with the smaller drift rate. True
Wiener processes with drifts δi,10,1 and diffusion coefficient ς10,1 were estimated using a
simple numerical technique discussed in Brown et al. (2006).



Figure 2: The time course of one trial of the experimental stimulus. One trial consisted
of the following: 1) 750 ms of fixation on a black cross on a gray screen, then 2) visual
contrast noise changing at 8 Hz for 750 ms while maintaining fixation (dubbed the cue
interval) and 3) a circular field of small oriented bars flickering at 15 Hz overlaid on the
changing visual noise for 1000 to 2000 ms while maintaining fixation (dubbed the response
interval). The subjects’ task was to indicate during the response interval whether the bars
were on average oriented towards the “top-right” (45◦ from horizontal; as in this example)
or the “top-left” (135◦ from horizontal). It was assumed that subjects’ decision making
process occurred only during the response interval but could be influenced by both onset
attention to the visual noise during the cue interval and onset attention to visual signal
during the response interval.



Figure 3: A visual representation of the singular value decomposition (SVD) method
for finding single-trial estimates of evoked responses in EEG. The EEG presented here is
time-locked to the signal onset during the response interval, such that the single-trial ERP
encoded the response to the signal onset. A single trial of EEG from Subject 16 (Left) can
be thought of as a time by channel (T × C) matrix. The first SVD component explained
the most variability (79.9%) in Subject 16’s ERP response to the signal across all trials
in the training set. SVD weights v (C × 1) are obtained from the ERP response (i.e.
trial-averaged EEG; T ×C) and can be plotted on a cartoon representation of the human
scalp with intermediate interpolated values (Middle). This specific trial’s ERP (Right)
was obtained by multiplying the time series data from each channel on this trial by the
associated weight in vector v and then summing across all weighted channels.



k = 1, 2, 3

j = 1, . . . , 17

i = 1, . . . , 180

σ(τ) σ(δ) σ(ς)

µ(τ)k µ(δ)k µ(ς)k

τjk δjk ςjk

yijk

(a) Model 1

k = 1, 2, 3

j = 1, . . . , 17

i = 1, . . . , 180

σ(γ∗
(τ)

)I σ(γ∗
(δ)

)I σ(ς)

µ(γ∗
(τ)

)k µ(γ∗
(δ)

)k µ(ς)k

γ∗
(τ)jk γ∗

(δ)jk
ςjk

τijk δijk

xijk

yijk

(b) Model 2

k = 1, 2, 3

j = 1, . . . , 17

i = 1, . . . , 180

σ(γ∗
(τ)

)I σ(γ∗
(δ)

)I σ(γ∗
(ς)

)I

µ(γ∗
(τ)

)k µ(γ∗
(δ)

)k µ(γ∗
(ς)

)k

γ∗
(τ)jk γ∗

(δ)jk γ∗
(ς)jk

τijk δijk ςijk

xijk

yijk
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Figure 4: Graphical representations of the three hierarchical Bayesian models following the
convention of Lee and Wagenmakers (2014). Each node represents a variable in the model
with arrows indicating what variables are influenced by other variables. The magenta
2 ∗ 1 vector of reaction time and accuracy yijk and the blue (p + 1) ∗ 1 vector of p EEG
regressors (+1 intercept) xijk are observed variables, as indicated by the shaded nodes.
Bolded blue variables indicate (p + 1) ∗ 1 vectors, such as the subject j level effects γ∗

jk

of each EEG regressor and the condition k level effects µ(γ∗)k of each EEG regressor. In
Model 3 for each trial i, values of non-decision time τijk, drift rate (evidence accumulation
rate) δijk, the diffusion coefficient (evidence accumulation variance) ςijk are deterministic
linear combinations of single-trial EEG regressors xijk and the effects of those regressors
γ∗
jk that vary by subject and condition.



Figure 5: Single-trial evoked responses of an example subject, Subject 12, to the visual
noise during the cue interval (Left) and single-trial evoked responses to the visual signal
during the response interval (Right). Single-trial P200 and N200 magnitudes were found
by finding peak amplitudes in 150 to 275 ms time windows (as indicated by the vertical
dashed lines) of the SVD-biased EEG data in both the cue and response intervals. The first
300 ms of the intervals are sorted by single-trial P200 magnitudes in the cue interval and
single-trial N200 magnitudes in the response interval. Latencies of the single-trial P200
and N200 components correspond to known latencies of P2 and N1 ERP components.



Figure 6: The posterior distributions of the effect of a trial’s N200 latency during the
response interval (onset attention latency to the signal stimulus) on trial-specific non-
decision times τijk for each subject j in the low noise condition k = 1. Subjects 2, 6, 7 and
11 were left out of the training set and their predicted posterior distributions are shown in
red. Thick lines forming the distribution functions represent 95% credible intervals while
thin lines represent 99% credible intervals. Crosses and horizontal lines represent poste-
rior means and modes respectively. Also shown are the topographic representations of
the channel weights of the first SVD component of each subject’s response interval ERP,
indicating the location of single-trial N200s over occipital and parietal electrodes. Evi-
dence suggests that longer attentional latencies to the signal, N200 latencies, are linearly
correlated with longer non-decision times in the low noise condition.



Figure 7: The posterior distributions of the effect of a trial’s P200 amplitude during the
cue interval (onset of attention to the noise stimulus) on trial-specific evidence accumula-
tion rates δijk for each subject j in the medium noise condition k = 2. Subjects 2, 6, 7
and 11 were left out of the training set, their predicted posterior distributions are shown
in red. Thick lines forming the distribution functions represent 95% credible intervals
while thin lines represent 99% credible intervals. Crosses and horizontal lines represent
posterior means and modes respectively. Also shown are the topographic representation
of the channel weights of the first SVD component of each subject’s cue interval ERP,
indicating the location of single-trial P200s over occipital and parietal electrodes. Evi-
dence suggests that the effect of the attention to the noise, reflected in P200 amplitudes,
positively influenced the drift rate of each subject in each trial, in the medium and high
noise conditions.



Figure 8: Right and left sagittal and posterior views of localized single-trial P200 evoked
potentials during during the cue interval (Top) and localized single-trial N200 evoked po-
tentials during the response interval (Bottom) averaged across trials and subjects. The
cortical maps were obtained by projecting MNI-scalp spline-Laplacians (Nunez and Pil-
green, 1991; Deng et al., 2012) onto a subject’s anatomical fMRI image via Tikhonov (L2)
regularization, maintaining similar distributions of activity of the surface Laplacians on
the cortical surface. Blue and orange regions in microamperes per mm2 correspond to
cortical areas estimated to produce negative and positive potentials observed on the scalp
respectively. These two particular projections of the Laplacians suggest that P200 and
N200 activity occurs in extrastriate cortices and areas in the parietal lobe.



Prediction of new data from new subjects

Model 1 Model 2 Model 3
Comparison EEG-δ,τ EEG-δ,τ ,ς

L
ow

25th t1 Percentile −9.8% 22.1% 17.9%
t1 Median −37.6% −11.6% −14.3%

75th t1 Percentile −67.3% −46.7% −47.6%
Accuracy −8.1% −22.8% −65.9%

M
ed

iu
m

25th t1 Percentile −5.3% 8.4% 5.3%
t1 Median −30.7% −22.5% −25.7%

75th t1 Percentile −62.6% −53.9% −56.2%
Accuracy −13.1% −35.5% −67.7%

H
ig

h

25th t1 Percentile −1.7% 8.2% 7.7%
t1 Median −12.0% −4.3% −2.9%

75th t1 Percentile −37.6% −25.5% −23.7%
Accuracy −4.3% −14.1% −29.1%

Table 2: Percentage of across-subject variance explained by out-of-sample prediction
(R2

pred) for accuracy and summary statistics of new subjects’ and correct-RT distributions.
Posterior predictive distributions were generated for 4 new subjects by drawing from con-
dition level posterior distributions. Most R2

pred measures are negative because the amount
of variance in prediction was greater than the variance of the measure across subjects;
however the relative values from one model to the next are still informative about the
improvement in prediction ability. The model without single-trial EEG measures, Model
1, does not predict new subjects’ correct-RT distributions. Models with single-trial EEG
measures of onset attention, Model 2 and Model 3, can predict some variance of the new
subjects’ 25th percentiles, with Model 2 outperforming Model 3.



Prediction of training data from known subjects

Model 1 Model 2 Model 3
Comparison EEG-δ,τ EEG-δ,τ ,ς

L
ow

25th t1 Percentile 96.5% 97.1% 97.8%
t1 Median 96.6% 96.5% 97.3%

75th t1 Percentile 91.4% 93.4% 94.5%
Accuracy 95.1% 95.2% 97.3%
t0 Median −118.8% −108.3% −111.6%

M
ed

iu
m

25th t1 Percentile 86.0% 87.5% 88.6%
t1 Median 95.9% 95.6% 96.3%

75th t1 Percentile 84.7% 89.4% 90.1%
Accuracy 90.7% 94.1% 95.3%
t0 Median −163.9% −158.6% −163.9%

H
ig

h

25th t1 Percentile 85.4% 87.3% 86.7%
t1 Median 93.1% 92.5% 92.9%

75th t1 Percentile 79.1% 83.8% 84.0%
Accuracy 95.9% 97.4% 95.9%
t0 Median −73.4% −71.2% −76.4%

Table 3: Percentage of variance across subjects explained by in-sample prediction (R2
pred)

for summary statistics of known subjects’ accuracy-RT distributions. All three models fit
accuracy and correct-RT t1 data very well, explaining over 92% of median correct-RT and
over 90% of accuracy in each condition. However none of the models explain incorrect-RT
t0 distributions well, a known problem for simple diffusion models that can be overcome
by including variable drift rates directly in the likelihood function (Ratcliff, 1978; Ratcliff
and McKoon, 2008).
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