
Mental chronometry, the study of psychological processes 
through observed response times (RTs), is one of the most 
prevalent approaches in cognitive psychology. As early as 
1868, Donders (1868/1969) used RT measurements in order 
to investigate differences between mental processes. Since 
then, RT studies have been used in perhaps all fields of cog-
nitive science. Such is the importance of RT data to cognitive 
psychology that methods for analyzing them have become 
an object of study in their own right (e.g., Luce, 1986).

Continuing this trend, considerable attention has been lent 
to the combination of RT and accuracy data (a ubiquitous 
combination often referred to as two-choice response time 
data). For the analysis of this type of data, several nonlinear 
statistical models have been developed, often with substan-
tive interpretations attached to the parameters and underlying 
processes (e.g., the discrete random walk model: Laming, 
1968; Link & Heath, 1975). A more advanced model, and 
the one that is at the heart of the present article, is the Ratcliff 
diffusion model (RDM; Ratcliff, 1978; Ratcliff, Van Zandt, 
& McKoon, 1999). The latter model, which will be described 
in detail in the next section, has performed remarkably well 
in the analysis of two-choice RT data. It has successfully 
been applied to experiments in many different fields, such 
as memory (Ratcliff, 1978, 1988), letter matching (Ratcliff, 
1981), lexical decision (Ratcliff, Gomez, & McKoon, 2004; 
Wagenmakers, Ratcliff, Gomez, & McKoon, in press), sig-
nal detection (Ratcliff & Rouder, 1998; Ratcliff, Thapar, & 
McKoon, 2004; Ratcliff et al., 1999), visual search (Strayer 
& Kramer, 1994), and perceptual judgment (Ratcliff, 2002; 
Ratcliff & Rouder, 2000; Thapar, Ratcliff, & McKoon, 2003; 
Voss, Rothermund, & Voss, 2004). In particular, the RDM 
succeeds in explaining characteristic aspects of two-choice 

RT data such as the occurrence of both fast and slow errors. 
With the RDM, it is possible to make statements about entire 
distributions of correct and error latencies, and the param-
eter estimates allow for much more detailed inferences than 
those provided by classical models such as ANOVA or curve 
fitting. In particular, the RDM’s parameters, which will be 
described in detail in the next section, can provide insight into 
the relative contributions of different factors, such as quality 
of the input stimulus, conservativeness of the participant, and 
time spent on processes other than deciding.

In spite of its advantages, the RDM has not yet become 
a popular or widely used method to analyze two-choice 
RT data. The reasons for this lack of dispersion have to do 
with numerical, statistical, and software issues (see also 
W. Schwarz, 2001). The first set of reasons concerns the fact 
that the model is prohibitively difficult to implement for ap-
plied researchers because of numerical difficulties. One has 
to deal with an infinite oscillating series in the expression 
for the cumulative distribution function (CDF) or probability 
density function (PDF; see Ratcliff & Tuerlinckx, 2002). In 
addition, some of the parameters are allowed to vary from 
trial to trial and this leads to (partly) intractable integrals (Rat-
cliff & Tuerlinckx, 2002; Tuerlinckx, 2004). Recently, Voss 
and Voss (2007b) have proposed a method to circumvent the 
problem, but their solution requires a numerical solution of a 
partial differential equation. However, once the CDF or PDF 
have been computed, the task of estimating the parameters 
still requires some skill in function optimization, because no 
analytical estimators exist. In sum, some experience with nu-
merical methods is needed to implement the model.

The second group of reasons to have forestalled wide-
spread use of the RDM is related to statistical issues. The 
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cal methods for testing substantive hypotheses and compar-
ing different models. We then briefly introduce our DMAT 
for MATLAB. We present results from simulation studies 
where properties of these statistical methods are investi-
gated. Finally, we demonstrate the use of our methods and 
software in two example applications.

The Ratcliff Diffusion Model

Parameters of the Model

The diffusion process (see Figure 1) has been used to 
describe and model the decision component in simple two-
choice tasks. In the model, it is assumed that an observer 
has a one-dimensional internal representation of evidence. 
When the observer is presented with a stimulus, informa-
tion about it is accumulated sequentially over time until its 
total amount reaches the upper or lower bound, resulting 
in a response (absorbing boundaries). The decision time 
is defined as the time from the start of the process until the 
moment one of the absorbing boundaries is reached.

The RDM has seven parameters. The first parameter is 
the boundary separation, denoted by a. If a is small, the 
process is expected to end sooner, but it is more prone to 
error because random variability inherent to the decision 
process may cause it to end up at the wrong boundary. 
When a is large, both accuracy and expected RT will in-
crease. The distance between the two absorbing bound-
aries therefore regulates the relation between speed and 
accuracy (the so-called speed–accuracy trade-off ).

A second property of the model is the starting point of 
the information accumulation process, which is denoted as 
z0 (0  z0  a). This parameter introduces the possibility of 
response bias in the decision process because the process 
is more likely to end at the boundary closer to the starting 
point. We will assume z0 to vary from trial to trial (Laming, 
1968), according to a uniform distribution, with mean z (0  
z  a) and range sz [0 , sz , min(z, az)]. These two— 
z and sz—are the second and third parameters of the RDM.

Furthermore, the information accumulation process 
can have a tendency to drift off to one of the two absorb-
ing boundaries, depending on the quality of the stimulus 

type of data used to apply the diffusion model is rather com-
plex. On each trial, there is a bivariate response, consisting 
of an RT and a choice. The latter is binary, the former is 
continuous but nonnormal (positively skewed and with a 
lower boundary possibly different from zero). The treatment 
of such data is not a trivial issue, and traditional statistical 
methods suited for linear analysis (e.g., relying on means, 
computing R2, etc.) fail in this case. In addition, the RT 
measure may be muddied with outliers and contaminants.

The third category of reasons has to do with the fact that 
at the time of this writing, there is no flexible or general 
software available for diffusion model analysis. Exceptions 
are the new program developed by Voss and Voss (2007a) 
and EZ-diffusion by Wagenmakers, van der Maas, and Gras
man (2007; see also Appendix B). However, the latter is not 
able to fit the full RDM. Until now, in each of the substan-
tive studies cited above that made use of the RDM, fitting 
software was custom-written. However, researchers often 
collect data in a design that deviates from designs for which 
the previously developed software was written, which im-
pedes the application of the custom-written software. 

It is the goal of the present article to make diffusion 
model analysis more accessible to a general public of re-
searchers by providing numerical and statistical methods 
that are useful when fitting the RDM. Also, we provide 
some demonstration of a MATLAB tool that implements 
the methods we present (the Diffusion Model Analysis Tool-
box or DMAT; Vandekerckhove & Tuerlinckx, 2007). For 
an introduction to the practical side of working with DMAT, 
however, we refer the interested reader to the DMAT primer 
(Vandekerckhove & Tuerlinckx, in press).

In what follows, we start with a brief explanation of the 
RDM. Next, we outline a design matrix method that per-
mits the imposition of substantive restrictions on the model’s 
parameters. This flexible technique facilitates fitting of the 
RDM and allows for the construction of models that can 
capture a variety of substantive hypotheses. Subsequently, 
we will discuss techniques related to the estimation of the 
parameters of the RDM (i.e., the handling of outliers, and 
the construction and minimization of the loss function). In 
the following section, we will describe the necessary statisti-
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RT (x = 0)

RT (x = 1)

Figure 1. An illustration of the Ratcliff diffusion model.
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Second, and more importantly, in many situations one 
may want to impose substantive restrictions on the param-
eters, in effect leading to a reduction in the number of pa-
rameters. An obvious example of such a restriction is the 
requirement that a certain parameter equals a known con-
stant. For example, it can be hypothesized that the range of 
nondecision time, st, equals zero for all conditions (st(c)  
0 for c 5 1, . . . , C ). In this way, st has been dropped from 
the model (see below for an evaluation of this restriction). 
Another popular substantive restriction in the context of 
the diffusion model is the requirement of a symmetric dif-
fusion process (z(c) 5 a(c)/2 for c 5 1, . . . , C ).

However, we can go a step further by carrying out a regres-
sion of the parameters onto a set of predictors. To elucidate 
this concept, assume that a researcher has set up a bright-
ness discrimination task (Ratcliff & Rouder, 1998; see also 
Example 2 in this article); assume also that there are 33 lev-
els of brightness defined by increasing the number of white 
pixels in each step with an equal number. For the moment, 
the focus will be on the drift rates. Not restricting the drifts 
in any way will lead to 33 drift parameters to be estimated. 
However, the researcher may want to test the hypothesis that 
the drift rate varies linearly with brightness level:

v(c) 5 v*
(1) 1 B(c) v

*
(2),

where B(c) refers to the brightness level in condition c and 
c 5 1, . . . , C. In this example, we have reduced the number 
of parameters to be estimated from 33 to 2. (Note also that 
we have introduced a new notation here: basic or design 
parameters are marked with an asterisk.)

In general, the drift rate in condition c can be decom-
posed into a weighted linear combination of M known 
predictor values:
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where dcj is the value of the jth predictor in condition c. 
In the aforementioned example, M 5 2, dc1 5 1 and dc2 5 
B(c). Because we have C linear equations, as in Equation 1 
(one for each drift rate), we can make use of matrices and 
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presented. This information accumulation rate, or drift 
rate, is assumed to vary not only within a trial, following 
a Gaussian distribution with mean ξ and standard devia-
tion s, but also across trials (Ratcliff, 1978), such that ξ fol-
lows a Gaussian distribution with mean v and standard de-
viation . An experimental condition with nonambiguous 
stimuli will lead to a large positive mean drift rate v and 
thus a high probability of hitting the upper boundary (in-
dicating a correct response) in a short time. The standard 
deviation s, which indicates the volatility in drift rate in a 
single trial, is a nonidentified parameter in the model, so 
we fixed it to the arbitrary value 0.1, which is a consensus 
value in the literature (e.g., Ratcliff et al., 1999). Thus, we 
added a fourth and fifth parameter to the model, namely 
the mean drift rate v and its intertrial standard deviation h.

Finally, another component of the model is the time 
needed to perform nondecision processes such as encod-
ing of the stimulus, response preparation and execution of 
the motor response (Luce, 1986). We denote the nondeci-
sion part of the observed RT as ter. This ter is assumed to 
vary from trial to trial, according to a uniform distribution 
with mean Ter and range st. These two are the sixth and 
seventh parameters of the RDM.

Some Notational Conventions

In the preceding section, we defined the seven key pa-
rameters of the diffusion model. We will sometimes cap-
ture all of these parameters in a parameter vector q(c) 5 
(a(c), Ter(c), (c), z(c), sz(c), st(c), v(c)), where the bracketed 
subscript (c) refers to the cth condition in an experiment, 
and c 5 1, . . . , C. When working with different conditions 
in an experiment (and thus different parameter vectors), 
we will vertically concatenate the parameter vectors into a 
parameter matrix, P. Thus, if we have C conditions, 
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A single column in such a parameter matrix then contains 
estimates of one specific parameter over conditions, and 
such a column vector will be denoted with a ψ. For ex-
ample, the nondecision time in condition c will be denoted 
as Ter(c), which is the cth element of ψTer (the second column 
of P) and the second element of q(c) (the cth row of P).

Finally, we will often use a plain q to refer to a generic 
(i.e., any) parameter.

The design matrix method

There are several reasons why a researcher might not be 
interested in fitting a model with all parameters free. First, 
there is the issue of parsimony. Fitting the RDM to an exper-
iment with C conditions would leave us with 7  C distinct 
parameters to estimate. Even if the number of conditions 
is moderate, for example C  5, this leads to many param-
eters to be estimated (i.e., 35 parameters to be estimated). 
Therefore, it seems that some reduction in the number of 
parameters is needed from a pragmatic point of view.
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Creative use of design matrices makes it possible to 
impose substantive restrictions on parameter sets, and 
will enable researchers to test specific substantive hy-
potheses. Extending the diffusion model with the design 
matrix methodology, it becomes possible to build a type of 
“ANOVA/multiple regression” diffusion model.

Using the design matrix method entails two restrictions, 
however. First, only linear decompositions (i.e., linear in 
the basic parameters) can be represented by matrices. 
Second, only restrictions across conditions are possible, 
whereas restrictions across parameters (e.g., restricting z 
to be equal to a/2) require a different strategy. Nonethe-
less, implementing restrictions using design matrices is a 
very flexible and powerful tool that has gained some atten-
tion in other areas (e.g., see De Boeck & Wilson, 2004, for 
a wide variety of applications in psychometrics).

Statistical Inference: Estimation

Finding the parameters of the RDM, given a data set, is 
something of a challenge. Before starting, several nontriv-
ial choices need to be made, in particular regarding how to 
deal with outliers and other contaminant RTs, the objec-
tive function to use in the estimation step, and the precise 
method of optimization of the latter function. In this sec-
tion, we discuss each of these choices, but for details we 
will refer the reader to Appendices A and B. A crucial part 
of any algorithm to fit the diffusion model is the efficient 
computation of its CDF. For this, we rely heavily on the 
methods described in Tuerlinckx (2004).

Outlier Handling Strategies
An important issue to consider when applying a statisti-

cal model to RT data is that of contaminants, data points 
that appear in the data sets but are somehow not germane 
to the research question. A well-known class of contami-
nants is that of outliers (data points that are outside the 
range of normal observations); other examples are ran-
dom guesses (data from trials where the participant some-
how missed the stimulus and guessed), delayed start-ups 
(where the participant was somehow inappropriately de-
layed in responding), and fast guesses (where the partici-
pant executed a response before having actually inspected 
the stimulus).

Each of these types of contaminants can severely muddy 
the data (Ratcliff, 1993; Ratcliff & Tuerlinckx, 2002; Ul-
rich & Miller, 1994), possibly resulting in biased param-
eter estimates and incorrect standard errors of estimation. 
A fitting procedure for an RT model such as the one con-
sidered in this article should therefore always be equipped 
with a proper strategy for handling these contaminants. 
We opt for a combination of two methods: First, the data 
are preprocessed with an exponentially weighted moving 
average (EWMA) control method that gives the minimal 
RT necessary for inclusion in the data analysis; and sec-
ond, a mixture model is fitted to the data.

The EWMA method is an optional new method used in 
a preprocessing step in order to filter out RTs suspected 
of being fast guesses. The idea behind this method is that 
the identification of fast guesses is made possible because 

The design matrix D is a C 3 M matrix where each column 
represents a predictor (e.g., an intercept, an experimental 
treatment, a measured variable, etc.). The design matrix D 
is then multiplied with an M 3 1 design parameter vector, 
to recover a C 3 1 model parameter vector y.

The idea of regressing the parameters onto a set of pre-
dictors can be applied to all parameters in the model and is 
by no means restricted to the drift rates. Because a differ-
ent design matrix can be used for each parameter, D is in-
dexed with the parameter symbol in order to make it clear to 
which parameter the design corresponds. The entire param-
eter matrix P can be described in terms of only the seven 
(known) design matrices D and the seven design parameter 
vectors y. The result is that, when fitting the model to the 
data, only the elements of the parameter vectors (as opposed 
to all the diffusion parameters) have to be estimated.

Two special and interesting cases of design matrices D 
are worth mentioning. The first special case is where D 
consists of a column of ones. This can be illustrated for 
the parameter Ter as follows:
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The result of this is that the C conditions have the same 
Ter. In a second special case, D equals the C 3 C identity 
matrix; each of the C conditions, therefore, has a different 
value for a certain parameter. In the case of an identity 
matrix as the design matrix, there is no restriction of pa-
rameters across conditions.

To illustrate the usefulness of the design matrix method, 
let us consider a final example. Suppose we want to fit a 
drift rate to the first condition and allow the drift rates of 
the other conditions to deviate from the first condition 
(but all in the same way). This can be implemented by 
defining the design matrix
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and therefore v(1)  v*
(1) and v(c)  v*

(1)  v*
(2) for all c  1 

(see chap. 6 in Littell, Stroup, & Freund, 2002, for more 
details on the construction of design matrices).

In general, we formulate the parameter matrix P  
{Da  a*, DTer  T*

er
, Dη  η*, Dz  z*, Dsz  s*

z, Dst 
 s*

t, 
Dv  v*}. Then, all the elements of a*, T*

er,  η*,  z*,  s*
z,  s*

t, 
and v* are the parameters over which we want to optimize 
the fit to data.
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the observed number of data points in each of a set of pre-
defined “RT bins.” We call this statistic Λ. Details regard-
ing Λ and its optimization are provided in Appendix B.

Statistical inference:  
Testing and model selection

After having estimated the parameters of one or more 
models, the researcher may want to test hypotheses about 
the parameters, and/or compare models. We distinguish 
between testing a hypothesis about a single parameter 
with the Wald test, comparing two nested models, and 
comparing nonnested models.

The Wald Test for a Hypothesis About  
Single Parameters

The univariate Wald test can be used to test the null 
hypothesis that q  q0 (vs. the alternative q  q0). It starts 
from the Wald statistic

Z
se

=
−ˆ

,
ˆ

θ θ

θ

0

where ̂q is the point estimate of some parameter q and seˆq 

the standard error. Under the null hypothesis and under 
some regularity conditions, Z follows approximately a 
standard normal distribution (or, equivalently, Z2 follows 
a χ2

1 distribution; Bishop, Fienberg, & Holland, 1975; the 
univariate Wald test is equivalent to a “Z test”).

Although the regularity conditions are fairly general, 
one of them is noteworthy. The Wald statistic should not 
be used if the test value q0 is at a boundary of the param-
eter space (Bishop et al., 1975; but see also Stram & Lee, 
1994, for an adaptation of the reference distribution). As a 
consequence, it cannot be used to test the null hypothesis 
that, for example, η 5 0, since η is bounded at 0.

Note also that a multivariate Wald test is possible to 
test a composite null hypothesis about several parameters 
(Bishop et al., 1975).

Comparing Two Nested Models

A model called the reduced model is nested in another 
model called the full model, if the reduced model can be 
reached by setting restrictions on the parameters of the full 
one (e.g., setting some of the parameters to zero). Such 
nested models can be compared through the likelihood 
ratio test (LRT). In this way, joint hypotheses about several 
parameters can be tested simultaneously. The LRT is very 
helpful in combination with the design matrix approach, 
because Model 1 is nested in Model 2, if for a given param-
eter the columns of the design matrix of Model 1 (D1) lie in 
the space spanned by the columns of the design matrix of 
Model 2 (D2) (where we assume that the design matrices for 
the other parameters are kept constant); that is, the models 
are nested if each column of D1 can be represented as a 
linear combination of the columns of D2.

For example, a researcher might want to test whether 
an experimental manipulation has had some influence 
on drift rate. To that end, one could compare a model in 

they tend to have a specific signature, being responses with 
a very short RT and chance level performance. A method 
suggested by this property of fast guesses sorts the data 
points according to the RTs and finds the minimal RT at 
which the responses begin to deviate from what we expect 
when guessing. This minimal RT is used as a lower cutoff 
value, such that all observations with shorter RTs are cen-
sored. More technical detail is provided in Appendix A.

The mixture model approach to handling outliers was 
first described in Ratcliff and Tuerlinckx (2002), but is ex-
tended here to cope with a larger variety of contaminants. 
The basic idea is that each trial has a probability of (1  π)γ 
of being a guess, a probability of (1  π)(1  γ) of being a 
“delayed startup,” and a remaining probability π of being an 
actual realization of a diffusion process (note that this model 
reduces to the original RDM if π is 1). Each trial can then 
be represented by the decision tree shown in Figure 2. The 
first step leads to either the diffusion process (with prob-
ability π) or to a contamination process (with probability 
1  π). A contamination process can in turn be a “guess” 
(with probability γ) or a “delayed startup” response (with 
probability 1 2 γ) . Note that this treatment adds two free 
parameters to the model (π and γ), yielding an extended 
RDM. Details concerning the component distributions and 
the mixture distribution are provided in Appendix A.

The Loss Function

To estimate the best-fitting parameters of the RDM 
(or the extended RDM), given a data set, we have to find 
the maximum of a likelihood function, or the minimum 
of some deviance function. For our loss function, we use 
a negative multinomial log-likelihood function (MLF), 
but other options are available in the program (see The 
Diffusion Model Analysis Toolbox section, below). We 
opt for the MLF for several reasons, chief among them 
its computational tractability compared with continuous 
likelihood and its robustness in the face of a small amount 
of contaminants and outliers (see Ratcliff & Tuerlinckx, 
2002). Briefly, the loss function is defined as 2 times 
the natural logarithm of the joint likelihood of observing 

π (1– π)

γ (1– γ)

Diffusion
process

Contaminant

Random
guess

Delayed
startup

Figure 2. A decision tree structure illustrating the mixture 
model.
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with less technical background to use the diffusion model 
in practice. The program, DMAT, can be freely down-
loaded from the Web site of the K.U. Leuven Research 
Group for Quantitative and Personality Psychology (ppw 
.kuleuven.be/okp/dmatoolbox).

In creating DMAT, we had two main goals in mind. The 
program should be (1) accurate and efficient, and (2) user 
friendly. We believe that we have achieved both goals to 
a satisfactory degree. Regarding accuracy and efficiency, 
DMAT performs well in simulations (see below) test-
ing the recovery of model and design parameters from 
simulated data (estimation biases are generally low, and 
standard errors small). In addition, on our desktop PCs 
the algorithm typically converges in less than 1 min. The 
program is developed to make use of all fitting and model-
ing strategies we have discussed above (and more).

Regarding flexibility and ease of use, we have added a 
graphical user interface. (Note that a MATLAB command 
interface is also available and offers more flexibility.) Also, 
wherever possible, we have provided default settings that 
we believe will perform well in most cases, and we have 
written an instructional primer to the use of the toolbox 
(Vandekerckhove & Tuerlinckx, in press).

Simulations

To evaluate aspects of the tools described above, we 
performed many Monte Carlo simulations, of which we 
report here a selection. We discuss the results of three sim-
ulation studies in which the performance of the estimation 
method is tested and two more simulations are carried out 
to evaluate properties of the inferential statistics associ-
ated with using the RDM.

Throughout, we use six standard parameter sets 
(A through F), which are reported in Table 1. Note that 
in each of these parameter sets, there are four conditions, 
across which all parameters are identical, except for drift 
rate, which systematically varies (in Table 1, there are ten 
columns with parameters: six with the parameters that are 
constant across conditions, and one for each condition’s 
drift rate). We borrow these parameter sets from Ratcliff 
and Tuerlinckx (2002). The basis of our simulation method 
was the rejection method described in Tuerlinckx, Maris, 
Ratcliff, and De Boeck (2001).

Asymptotic Parameter Recovery
As a first test of the estimation algorithm, we used it to 

estimate RDM parameters, given the true (i.e., expected) 
proportions in each of the bins of the likelihood function 

which all drift rates are constrained to be equal to a model 
where they are free to vary over conditions. The former 
model—the reduced model—could be formulated as 

PReduced  {1C  a*, 1C  T*
er, 1C  h*, 1C  z*, 

1C  s*
z, 1C  s*

t, 1C  v*}, 

where 1C indicates a C  1 vector with all elements equal 
to 1 (C being the number of conditions in the experiment). 
This model restricts all parameters to be equal across condi-
tions, whereas the latter model—the full model—is then 

PFull  {1C  a*, 1C  T*
er, 1C  h*, 1C  z*, 

1C  s*
z, 1C  s*

t, ICC  v*},

where the drift rates are now determined by the multipli-
cation of the C  C identity matrix ICC and the design 
parameter matrix v*. Thus, the restriction on drift rate v 
is now released and C1 parameters have been added to 
the model (because v* now contains C elements instead 
of 1). Note that the columns of the drift design matrix in 
the reduced model lie in the column space of the design 
matrix of the full model.

The LRT statistic ∆Λ is the difference between the 
negative of twice the log-likelihood of the reduced model 
and the negative of twice the log-likelihood of the full 
model: ∆Λ ΛPReduced

  ΛPFull
. Under the null hypothesis 

(i.e., that the reduced model is true), ∆Λ follows approxi-
mately a chi-square distribution, with number of degrees 
of freedom (dfs) equal to the difference in number of pa-
rameters between the full model and the reduced model: 
∆Λ ΛPReduced

  ΛPFull
 ∼ χ2

∆df. In the case of the example 
given in the previous paragraph, ∆df  C  1.

Two things should be noted about the LRT. First, the 
same boundary condition applies here as for the Wald 
statistic: If the reduced model parameter set PReduced is 
at an edge of the parameter space of the full model, this 
statistic should not be used. Second, the distribution of 
∆Λ assumes that fixed RT bins were used (see Appen-
dix B). In the case where percentile-based bins were used, 
the chi-square assumption does not hold (see Speckman 
& Rouder, 2004; see also Appendix B).

Comparing Nonnested Models

If two models are not nested, model selection may be 
carried out by using information criteria such as the Akaike 
information criterion (in this article we use the small sam-
ple version AICc; Hurvich & Tsai, 1989) or the Bayesian 
information criterion (BIC; G. Schwarz, 1978). The two 
measures are defined as AICc  Λ  2dN/(N  d  1) 
and BIC  Λ  d log(N ), where N is the total number of 
observations and d indicates the number of free parameters 
in the model in question. In both cases, the model with the 
lower value on the criterion is preferred. Of course, these 
criteria can equally validly be applied to nested models.

The Diffusion Model  
Analysis Toolbox

In an attempt to further popularize the diffusion model, 
we have developed a MATLAB (version 2006a; The Math-
Works, Inc.) application, which should allow researchers 

Table 1 
Standard Parameter Sets Used in the Simulations

Parameter

Set  a  Ter  h  z  sz  st  v1  v2  v3  v4

A 0.08 0.30 0.08 0.04 0.02 0.02 0.40 0.25 0.10 0.00
B 0.08 0.30 0.16 0.04 0.02   0.02 0.40 0.25 0.10 0.00
C 0.16 0.30 0.08 0.08 0.02 0.02 0.30 0.20 0.10 0.00
D 0.16 0.30 0.16 0.08 0.02 0.02 0.30 0.20 0.10 0.00
E 0.16 0.30 0.08 0.08 0.10 0.10 0.30 0.20 0.10 0.00
F  0.16  0.30  0.16  0.08  0.10  0.10  0.30  0.20  0.10  0.00
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abled the outlier treatment or did not. When we did add 
outliers, 2.5% were fast guesses (RTs were draws from a 
uniform distribution between 200 and 400 msec, and accu-
racy was about 50%) and an additional 2.5% were delayed 
startups (RT draws from a uniform distribution between 
500 and 3,000 msec, but with accuracy as expected under 
the diffusion model). We then estimated the parameters for 
each data set with DMAT and compared parameter recov-
ery. In Table 4, the results are shown for Parameter Set A. 
As can be seen, if the data set did contain outliers with the 
aforementioned properties, and they are not accounted for, 
estimation biases increase dramatically to over 100% for 
some drift values. When the combined EWMA/mixture 
model method is applied, relative biases return to the same 
magnitude as in the condition where no outliers existed.

To conserve space, we do not report results for the other 
parameter sets here; but, as it turns out, our outlier treat-
ment succeeds in alleviating the influence of outliers and 
contaminants on parameter estimates. Biases and stan-
dard errors of the parameters that the adapted algorithm 
returned from the contaminated data set are closer to those 
of the parameters that the original algorithm returned from 
a “clean” data set, and they are lower than those from the 
original algorithm on the contaminated data set.

(see Equation B1 in Appendix B). In other words, as input 
we use the exact proportions of observations that each RT 
bin would have, given a certain set of parameters. Under 
this condition, there should be perfect recovery of the 
parameter values. This test was carried out under many 
different parameter sets, including the ones in Table 1. In 
each case, the algorithm returned the exact parameter val-
ues to the requested accuracy (this was the case for each 
objective function DMAT allows).

Preasymptotic Parameter Recovery
As a second test of the estimation algorithm, we per-

formed a series of simple simulations to investigate biases 
and standard errors of the parameter estimates. We define 
the relative bias of each parameter as

ˆ
%,θ θ

θ
− × 100

and the standard error as

1

1

2

R j
j

R

−
−( )∑ ˆ ˆ ,θ θ

with R the number of replications, and ̂q and ̂q
–

 respectively 
the estimate and the mean estimate of the parameter q.

From each of the six parameter sets shown in Table 1, we 
generated 100 data sets with 250 data points in each condi-
tion (without outliers). We used DMAT to find parameter 
estimates and calculated relative biases and standard errors 
within each parameter set. As can be seen from Table 2, the 
simulation parameters are generally well recovered. The a, 
Ter, and z estimates tend to be within 10% of their simula-
tion values. The relative biases of the v estimates are slightly 
larger for large values of the “true” v. As already seen in Rat-
cliff and Tuerlinckx (2002), the variance parameters tend to 
be slightly more difficult to estimate, in particular when they 
are small compared with the means of the distributions.

We repeated this simulation for three different sample 
sizes: Instead of having 250 observations per condition, 
we used simulated data sets with 100, 500, and 2,500 ob-
servations per condition. In Table 3 we show relative bi-
ases and standard errors for each sample size. To conserve 
space, we report average (absolute) values over the six 
standard parameter sets. As can be seen in Table 3, biases 
and standard errors are somewhat higher for the N 5 100 
condition, especially those regarding the starting point 
range and larger drift rates. As expected, biases decrease 
strongly as N increases, and standard errors decrease with 
a factor ​√ 

__
 5 ​ (i.e., the standard errors are roughly propor-

tional to the square root of the sample size).

Outlier Handling Strategies
To test the outlier treatment procedure applied by our 

algorithm (see Appendix A), we performed four more 
simple simulation runs to evaluate the combined EWMA/
mixture model approach. In each simulation run, we again 
generated 100 data sets from each of the six parameter sets 
shown in Table 1, with 250 data points in each condition.

We employed a simple 2 3 2 design: We either added 
outliers to the simulated data or did not, and we either en-

Table 2 
Recovery of Simulation Parameters by DMAT

Parameter

Set  a  Ter  h  z  sz  st  v1  v2  v3  v4
†

A 2 1 1 3 7 38 11 4 5 2
B 2 1 8 2 6 49 8 5 5 1
C 3 4 2 5 91 3 14 7 5 3
D 7 4 23 7 127 1 21 17 18 0
E 3 1 1 3 1 1 11 5 4 0
F 4 0 9 4 1 2 10 7 8 1

A 4 7 72 2 21 13 78 44 28 23
B 4 7 65 2 22 13 64 46 31 25
C 14 18 48 7 43 33 70 45 26 13
D 26 21 92 13 58 31 128 77 46 20
E 13 24 47 7 35 36 64 44 25 13
F 25 27 89 13 56 32 113 71 42 20

Note—Relative biases are in the upper half, standard errors (multiplied by 
1,000) in the lower half.  †Because the true values were zero, biases for v4 
are not relative biases, but the actual recovered values multiplied by 1,000.

Table 3 
Recovery of Simulation Parameters by DMAT, When the 

Number of Observations in Each of Four Conditions  
Is Varied Over Three Levels (100, 500, and 2,500)

Sample Parameter

Size (N ) a  Ter  η  z  sz  st  v1  v2  v3  v4
†

   100 4   2 12 6 49 5 23 15 4   4
   500 1   1 4 1 11 20 4 3 2   1
2,500 1   0 3 1 12 12 2 2 2   1

   100 18 24 89 10 48 42 126 86 45 31
   500 6 11 38 3 25 18 41 29 19 13
2,500 3   5 16 1 13 9 17 12 8   6

Note—The simulation was run with each of the six standard parameter 
sets, but the results are averaged here (for the relative biases, we aver-
aged over absolute values). Relative biases are in the upper half, standard 
errors (multiplied by 1,000) in the lower half.  †Because the true values 
were zero, biases for v4 are not relative biases, but the actual recovered 
values multiplied by 1,000.
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.05, .15, and .25 for Parameter Sets A through F, respec-
tively. If the LRT statistic follows a chi-square distribu-
tion, we would expect the p values resulting from this test 
to follow a uniform distribution under the null hypothesis. 
Figure 3 shows the empirical CDFs of p values for each of 
the six parameter sets together with the straight line which 
is the theoretical CDF of a uniform random variable. The 
empirical distribution of p values deviates from the theo-
retical but not much. The deviation indicates that the LRT 
is slightly too liberal, and that it may be prudent to test at 
more restrictive significance levels in practical settings.

Power analysis 2. Following up on the previous sim-
ulations, we set up a new series to determine how well 
DMAT is able to detect small differences in parameters. 
To that end, we simulated data sets with 250 data points in 

It should be noted, however, that other processes than 
the ones assumed here might generate contaminant RTs. 
If that is the case, then parameter estimates might still be 
biased, in spite of the correction mechanisms proposed in 
this article.

Power Analyses
Power analysis 1. In another series of simulations, we 

evaluated the power of the LRT. From each of the six pa-
rameter sets shown in Table 1, we again generated 100 
data sets with 250 data points in each condition. Then 
we allowed DMAT to find the best parameter estimates, 
imposing two different models. In the first model, we al-
lowed for no parameter changes across conditions: 

P1  {1C  a*, 1C  T*
er, 1C  h*, 1C  z*, 

1C  s*
z, 1C  s*

t, 1C  v*}. 

In the second model, we allowed drift rates to vary across 
conditions: 

P2  {1C  a*, 1C  T*
er, 1C  h*, 1C  z*, 

1C  s*
z, 1C  s*

t, ICC  v*}.

It can be seen that the first model is nested in the second. 
Therefore, the first is the reduced model and the second 
the full model.

We then computed the test statistic ∆Λ  ΛP1
  ΛP2

 ∼ 
χ2

df3 and its significance level. If the LRT has sufficient 
power, a large proportion of these statistics should be 
larger than the critical chi-square value. Failing to reject a 
null hypothesis that is truly false, on the other hand, would 
be a Type II error. In fact, as it turns out, in 99% of these 
cases did a significant result emerge at all significance 
levels (down to α 5 106). In only four cases (once in 
Parameter Set B and three times in C) was the null hypoth-
esis not rejected at the α 5 .01 level. It can be concluded 
that, at least for these parameter sets and this sample size, 
the LRT has very high power.

Type I error. However, the previous result begs the 
question of selectivity: Is it possible that the analysis 
would yield significant results, even where none were 
present? To test this possibility, we repeated the same kind 
of simulations, but now we changed the true parameters 
such that all drift rates remained constant across condi-
tions. The drift rates were all equal to .25, .15, .05, 
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Figure 3. The selectivity of the DMAT algorithm is illustrated. 
Different lines indicate different parameter sets. The full black 
line on the diagonal is the expected cumulative distribution func-
tion (CDF) of the p values (a uniform CDF). Lines above the di-
agonal indicate a liberal decision, whereas lines under it indicate 
a conservative decision. In general, DMAT produces CDFs that 
are close to the uniform CDF.

Table 4 
DMAT’s Recovery of Simulation Parameters From Either “Clean” or  

Outlier-Contaminated Data (Generated From Parameter Set A in Table 1),  
With Our Outlier Correction Method Either Enabled or Disabled

Outliers Outliers
Added  Treated  a  Ter  h  z  sz  st  v1  v2  v3  v4

†  π†  γ†

No No   2 1     4    3   25 40   10     4     4   0
Yes No 62 3 513  55 471  191 112 110 166   0
No Yes 5 3 60 3   12    14   15     3     0   0 0.96 0.22
Yes Yes   0 2 14    1   44   3     6     2     0   0 0.94 0.05

No No   4 7   64    2   21    13   71   40   23 21
Yes No   6 8   24    4   18    11   49 116   35 47
No Yes   4 8   46    2   18    16   72   32   18 16  29 347
Yes Yes   3 8   63    2   20    23   60   37   25 16    6   90

Note—Relative biases are in the upper half; standard errors (multiplied by 1,000) in the lower half.  †Bias values 
for this parameter are actual recovered values, not relative biases.
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Example 1: An Incomplete Factorial  
ANOVA Design

The experiment by Vandekerckhove et al. (in press) is 
in the domain of visual shape perception and change de-
tection in particular. The basic effect of interest is that if 
observers are shown a succession of two 2‑D shapes which 
are different in only one vertex (an angle or a curvature 
extreme), this difference is easier to detect if it is adding or 
removing a concavity than if it is adding or removing a con-
vexity (Barenholtz, Cohen, Feldman, & Singh, 2003). The 
substantive research question in this experiment is: Does 
the effect occur when the change is not adding or removing 
a new vertex, but increasing or decreasing an existing one? 
The paradigm is a two-interval forced choice task.

In the experiment, three variables are manipulated: 
(1) change—was there any difference between the two 
shapes? (2) quality—did the number of vertices change? 
(3)  type—if there was a change, was it in a concavity 
(curvature with negative sign) or in a convexity (positive 
sign)? As is obvious from Variables 2 and 3, this is not 
a fully crossed design (properties of the change cannot 
be manipulated if there has been no change; as a result, 
each “change” condition had 80 data points but each 
“no‑change” condition had 320). Table 6 lists all the con-
ditions between which we would want to differentiate. 
Because the manipulations are all intended to affect the 
quality of the stimulus, we expect changes in drift rate, 
but not in any other variable. Writing the design as we do 
in Table 6 simplifies construction of a design matrix: The 
complete design matrix is simply the last three columns in 
the table, plus one column with ones for an intercept.

The goal of this experiment (and thus of the data analy-
sis) is twofold. Primarily, it was to find out whether the 
type variable contributes anything above and beyond the 
quality variable. Additionally, if type has an effect, we 
would want to know whether it is independent of quality; 
that is, is there an interaction? To this end, we defined 

each of two conditions. In both conditions, all parameters 
were equal (and taken from Parameter Set A in Table 1), 
except for drift rate. Drift rate was always 0 in the first 
condition, as it was in the second condition also, unless 
it was .02, .04, .06, .08, or .10. With each of those values 
for the second drift rate, we generated 10,000 data sets 
and allowed DMAT to recover the parameter estimates, 
once with a model allowing no differences across the two 
conditions, and once allowing drift rate to differ between 
the conditions. Then we calculated the LRT statistic and 
the associated p values (found from a χ2 distribution with 
one degree of freedom). Figure 4 shows the proportion 
of rejected null hypotheses as a function of the threshold 
value α. There it can be seen that if the true drift rate in 
the second condition is .10, there are a lot of rejections of 
H0, even with very small values for α. Table 5 shows the 
proportion of rejections of H0 for common values of α. 
When α 5 .05, a drift rate of .10 is detected more than 
96.3% of the time, but at a 6.1% risk of getting a “false 
alarm.” With α 5 1026, there are no false alarms, but the 
test is much less powerful, detecting a drift rate difference 
of .10 in only 18.5% of cases.

Applications

To demonstrate the application of the methods de-
scribed in this article, we use two data sets containing 
both accuracy and RT data (Experiment 3 in Vandekerck
hove, Panis, & Wagemans, in press, and Experiment 1 
from Ratcliff & Rouder, 1998; used with permission). For 
substantive details on the studies, the interested reader is 
referred to Vandekerckhove et al. (in press) and Ratcliff 
and Rouder (1998).
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Figure 4. The sensitivity of DMAT is illustrated. Different lines 
indicate data sets with larger or smaller simulated differences 
in drift rate. As the simulated difference increases, the cumula-
tive distribution function of the p value departs from that of the 
uniform.

Table 5 
Proportion of Rejected Null Hypotheses for Different Levels of 
the α Criterion, and With Different “Real” Effects in the Data

Simulated Difference in Drift Rate

 α  0  .02  .04  .06  .08  .10  

.05 .0607 .1454 .3778 .6649 .8769 .9628

.01 .0151 .0503 .1848 .4452 .7297 .9062

.0001 .0002 .0023 .0153 .0819 .2586 .5388

.00001 .0000 .0009 .0044 .0285 .1244 .336

.000001 .0000 .0005 .0007 .0091 .0536 .1848

Note—Real differences in drift rate of .10 are detected in 96.28% of 
cases at the .05 significance level, but at that α level there are also 6.07% 
false alarms.

Table 6 
Design of Experiment 3 in Vandekerckhove et al. (in press)

 Condition  Change  Quality  Type  
1 1 1 1
2 1 1 1
3 1 1 1
4 1 1 1

 5  1  0  0  
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step: Allowing drift rates to vary freely does not signifi-
cantly improve the fit of the model ( p 5 .5435). Finally, 
whereas the step from Model 4 to Model 5 decreased the 
chi-square value, this decrease was again not significant 
when we take into consideration that 24 parameters had 
been added to the model ( p 5 .9587). Considering this, 
and inspecting the AICc and BIC values, Model 3 earns 
our preference. Furthermore, the estimated basic drift pa-
rameters were

ˆ
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The standard errors of these basic parameters, obtained 
from inverting the Hessian matrix, are 0.012, 0.010, 0.014, 
and 0.015, respectively. Thus, the Wald test for H0 : v4 5 0 
(the effect of type) is

Z
v

p
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The values of the other parameter estimates and their 
standard errors of estimation under Model 3 are given in 
Table 8. In the table, it can be seen that ŝ*z has converged to 
a boundary value (zero), so we might consider removing it 
from the model in a second stage of the data analysis; but 
doing so would not dramatically affect the other parameter 
estimates.

Regarding outlier treatment, the parameter π converged 
to a boundary value (one) as well, meaning that there ap-
pear to be very few contaminants in this data set. As a re-
sult, the γ parameter becomes unidentified, and we might 
later also consider dropping both π and γ from the model. 
(When we did this, the outcome of the analysis remained 
the same.) The cutoff value estimated by the EWMA 
method was 373.3 msec, meaning that about 9% of data 
points (in this case, evenly distributed across conditions) 
were censored.

As for the substantive hypotheses, the finding that add-
ing the type variable to the analysis significantly increased 
model fitness indicates that it influences drift rate, above 
and beyond the effect of the quality variable. Additionally, 
allowing for a more complex pattern than the experimen-
tal design (e.g., with interactions) did not lead to a better 
fit, indicating that for this participant, the experimental 
variables did not interact.

The reported results were not identical for all partici-
pants in the experiment. Five out of ten showed the pattern 
discussed above. In two other cases, Model 3 did not pro-
vide a significantly better fit than Model 2, indicating no 
significant effect of type. In a further two cases, Model 4 
did provide a significant improvement relative to Model 3, 
indicating interactions between experimental variables. In 
one final case, Model 4 performed better than Model 3, 
but Model 5 also performed better than Model 4, indicat-
ing influences on other parameters besides drift rate (with 
this participant, there was a large across-condition differ-
ence in boundary separation).

a series of five models, each an extended version of the 
former. In Model 1, all parameters were constant across 
conditions: 

P1  {15  a*, 15  T*
er, 15  h*, 15  z*, 

15  s*
z, 15  s*

t, 15  v*}.

In Model 2, we let drift rates vary according to the de-
sign of the experiment, without the type variable, and in 
Model 3, we let drift rates vary according to the complete 
design of the experiment. These design matrices were

Dv2 = −
−

−























1 1 1

1 1 1

1 1 1

1 1 1

1 1 0

and

Dv3 =

−

− −
−

−





















1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 0 0



,

respectively. In Model 4, we allowed drift rates to vary 
freely across conditions: Dv4  5 I55, and finally, in 
Model 5, we allowed all diffusion parameters to vary 
freely across all five conditions: 

P5  {I55  a*, I55  T*
er, I55  h*, I55  z*, 

I55  s*
z, I55  s*

t, I55  v*}.

Note that Model 1 has 9 free parameters, Model 2 has 11, 
Model 3 has 12, and Model 4 has 13, whereas Model 5 has 
37 (we keep the mixture-model parameters π and γ constant 
in all models). Note also that each model is nested in the 
next. The analysis we report is that for one participant in 
the experiment. Table 7 displays the fit statistics of each 
model together with the deviance Λ and the LRT statistic 
∆Λ for two consecutive models (together with the appropri-
ate number of dfs).

From the table, we can conclude that the increase in 
model freedom from Model 1 to Model 2 was a success, 
because the badness-of-fit measure significantly decreases 
( p 5 .0021). Going from Model 2 to Model 3 (adding 
the variable type) also significantly improved model fit 
( p 5 .0001). However, going to Model 4 (allowing devia-
tion from the experimental design) was not a worthwhile 

Table 7 
Fit Statistics From the Model Queue for 1 Participant  

(Example 1)

Model  Λ  df  ∆Λ  ∆df  p  AICc  BIC

1 2,414.32   9 2,433 2,472
2 2,401.95 11 12.37   2 .0021 2,424 2,472
3 2,387.49 12 14.46   1 .0001 2,412 2,464
4 2,387.13 13   0.37   1 .5435 2,414 2,470
5  2,373.70 37 13.42 24  .9587 2,453 2,609
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To perform the analysis, we defined a series of three 
models, each a more complex version of the former. In all 
models, we determined that there should be two different 
levels of the parameters a, z, and sz: one for the conditions 
with accuracy instruction, and one for those with speed in-
struction. To do this, we constructed the following design 
matrix for these parameters: 

D D D
1 0

0 1a z s
25 25

25 25
z

= = =











,

which has two columns with 25 ones and 25 zeros each. 
Additionally, in Model 1 we will allow v to evolve linearly 
with the brightness manipulation, while allowing differ-
ent regression slopes and intercepts for different speed–
accuracy instructions:

D
1 l 0 0

0 0 1 lv
25 25 25

25 25 25

=








 ,

where L 5 [3 6 7 . . . 27 28 31]T represents the 25 bright-
ness levels (with the first and last values adapted to reflect 
the average of the five groups pooled there). The other 
design matrices impose the requirement that there be no 
change across conditions: 

P2  {Da  a*, 150  T*
er, 150  h*, Dz  z*, 

Dsz
  s*

z, 150  s*
t, Dv  v*}.

However, the restriction that drift rates should increase 
linearly with the brightness manipulation is hardly ten-
able, both on theoretical grounds (because performance 
has upper and lower bounds) and due to opportunistic in-
spection of Ratcliff and Rouder’s (1998) results. In fact, 
in their article, drift rate increases with brightness like a 
sigmoid function. Thus, in Model 2, we add a quadratic, 
cubic, and quartic component to the design, to mimic an 
S-shaped function. Now,

D

1 l l l l 0 0 0 0 0

0 0 0 0 0

v

25 25 25 25 25 25

25 25 25 25 25

=
2 43

11 l l l l25
2 3 4












,

where the exponents indicate the element-wise power func-
tion (i.e., each element of the vector L is taken to that pow- 
er). The other design matrices are the same as in Model 1. 
Note that, for numerical reasons, we rescaled each column 
of Dv so that the values were in the range (0, 0.5).

In Model 3, we allowed drift rates to vary freely: 

P3  {Da  a*, 150  T*
er, 150  h*, Dz  z*, 

Dsz
  s*

z, 150  s*
t, I5050  v*}. 

Finally, in Model 4, all diffusion parameters can vary 
freely across conditions.

Models 1 to 4 have 14, 20, 60, and 351 free parameters, 
respectively, and each model is nested in the next. The mod-
els were fitted to the data of 1 participant. Table 9 displays 
the fit statistics of each model, and shows the Λ and ∆Λ 
statistics with their dfs. Figure 5 shows the drift rates ac-
cording to Models 1, 2, and 3 as a function of brightness.

Example 2: A Linear Regression Design
The first experiment in Ratcliff and Rouder (1998) is a 

brightness discrimination experiment. There were two ma-
nipulations of interest. First, there was a speed–accuracy 
instruction (participants were instructed to be either fast or 
accurate), and second, there was a manipulation of bright-
ness, which increased by steps of equal size over 33 levels. 
However, in order to ensure a sufficient number of trials 
in each cell, we collapsed the five darkest and five bright-
est levels into a single level each, leaving 25 levels of the 
brightness variable and the number of trials varying across 
conditions from 61 to more than 200, with an average of 
about 150. The two variables were completely crossed in 
a 2 3 25 design, yielding 50 conditions (conditions 1–25 
have an “accuracy” instruction and 26–50 have a “speed” 
instruction). The task was a two-alternative forced choice 
procedure wherein each participant was shown a stimulus 
and had to judge whether this stimulus was drawn from 
a “bright” distribution or from a “dark” distribution (the 
two distributions overlapped significantly, so participants 
could not be highly accurate). Feedback was given after 
each trial.

From the manipulations, we can expect two things: first, 
that the speed–accuracy instruction will have an effect on 
boundary separation, and second, as brightness of the 
stimulus increases, that the drift toward the “bright” re-
sponse will increase. Note that for this analysis, we change 
the interpretation of the model’s upper and lower boundar-
ies. We will now say that a hit on the upper boundary leads 
to a “bright” response, and that a hit on the lower leads 
to a “dark” response.1 The drift rate is hence no longer a 
measure of ability to respond correctly, but of a tendency 
to respond “bright” (and a negative drift rate can now rea-
sonably occur, indicating a tendency to respond “dark”). 
Because the responses are not classified as either correct 
or incorrect, the assumption for the EWMA method that 
guesses are equally distributed across responses (i.e., that 
50% of the guesses are “bright”) no longer holds true; 
accordingly, we switched off the EWMA preprocessing. 
For the same reason, the “fast guesses” component of the 
mixture model is no longer a valid representation, so we 
will assume that the weight γ is equal to zero.

Table 8 
Recovered Basic Parameters and Associated Standard Errors 

(SEs) for Example 1, Under Model 3, for 1 Participant

Parameter  Estimate  SE  Z  p

a*
(1)    0.1747 0.0105 16.63 ,.0001†

T*
er(1)    0.3406 0.0054 62.74 ,.0001†

*
(1)    0.2542 0.0346 7.36 ,.0001†

z*
(1)    0.0888 0.0053 46.88 ,.0001†

s*
z(1)    0.0807 0.0535 1.50 .0607†

s*
t(1)    0.0000 0.0318 0.00 .5000†

v*
(1)    0.0649 0.0117 5.56 ,.0001

v*
(2) 0.0385 0.0104 3.71 .0002

v*
(3) 0.0501 0.0135 3.72 .0002

v*
(4) 0.0769 0.0151 5.10 ,.0001

Note—Wald tests are for H0 : θ  0.  †Using Stram and Lee’s (1994) 
corrected reference distribution Z2 ~ .5c2

0  .5c2
1.
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an experiment and discussed the use of the likelihood ratio 
statistic ∆Λ for statistical inference and model selection. 
With this statistical framework to complement diffusion 
modeling, the simultaneous analysis of RT and accuracy 
data moves closer to the realm of well-known statistical 
procedures such as ANOVA and multiple linear regression. 
We presented simulation studies where the small-sample 
behavior of the likelihood ratio statistic was found suitable. 
We also presented outlier treatment methods and showed 
that they perform well. Furthermore, we have implemented 
these methods in a freely available software tool, DMAT 
(Vandekerckhove & Tuerlinckx, 2007, in press).

Some further extensions of the RDM now present 
themselves. A first extension that readily flows from the 
present study is to implement other (nonlinear) constraints 
on model parameters than the ones permitted by the de-
sign matrix method. For example, in our second applica-
tion we implemented an ad hoc imitation of a sigmoid 
function (with a polynomial of a high degree), whereas 
a better solution would be to simply use a nonlinear link 
function, such as a logit or probit link. A second possibil-
ity for advancement is to move from classical frequen-
tist parameter estimation to a Bayesian framework, as in 
Lee, Fuss, and Navarro (2007). Finally, further research 
is needed to investigate the statistical qualities of quan-
tile probability products estimators (Brown & Heathcote, 

As can be seen from the table, Model 2 greatly outper-
forms Model 1, indicating deviations from linearity (as 
is obvious from Figure 5). Moreover, Model 3 performs 
slightly better than Model 2. Finally, Model 4 does not per-
form significantly better than Model 3, indicating that it 
is not necessary to free all parameters in the model across 
conditions. The AICc and BIC statistics, in Table 9, show 
a preference for Model 2, where a polynomial regression 
was imposed on the drift rates. In this case, we would opt 
for Model 2, both because the information criteria point 
in that direction, and also because the LRT does not give 
convincing evidence against Model 2.

The recovered basic parameters and their standard er-
rors of estimation under Model 2 are given in Table 10, in 
which it can be seen that—as opposed to Example 1—all 
parameters significantly deviate from 0 (or from 1, in the 
case of π). With π̂ 5 0.9606, about 4% of the data (across 
conditions) are estimated to be contaminants.

For the two other participants, AICc and BIC values did 
not agree, but the pattern of significance between models 
was identical to that in Table 9.

Conclusion

In the present article, we investigated and enhanced the 
practical applicability of the diffusion model for RT and 
accuracy data and explored several avenues of improve-
ment. We suggested the use of design matrices in order to 
regress diffusion model parameters onto covariates from 
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Figure 5. Drift rates of 1 participant in Experiment 1 of Rat-
cliff and Rouder (1998). Drifts recovered by Model 1 are shown 
as dashed lines, with the steeper line indicating the speed condi-
tion. Drifts from Model 2 are full curves, and drifts from Model 3 
are stars. As can be seen, Model 1 provides a poor fit, whereas 
Model 2 is much closer to the separate drift rates, though still 
with some deviation left.

Table 10 
Recovered Basic Parameters and Associated Standard Errors 

(SEs) for Example 2, Under Model 2, for 1 Participant 

Parameter  Estimate  SE  Z  p
a*

(1) 0.1688 0.0016 103.50 ,.0001†

a*
(2) 0.0436 0.0000 .106 ,.0001†

   T*
er(1) 0.3065 0.0008 369.61 ,.0001†

h*
(1) 0.0252 0.0085 2.95 ,.0016†

z*
(1) 0.0821 0.0012 71.13 ,.0001†

z*
(2) 0.0218 0.0000 .106 ,.0001†

 s*
z(1) 0.0476 0.0078 6.12 ,.0001†

 s*
z(2) 0.0426 0.0000 .106 ,.0001†

 s*
t(1) 0.1427 0.0023 62.27 ,.0001†

v*
(1) 0.5892 0.0155 37.96 ,.0001

v*
(2) 3.9174 0.2829 13.85 ,.0001

v*
(3) 0.8681 0.0336   25.86 ,.0001

v*
(4) 6.4215 0.6207   10.35 ,.0001

v*
(5) 0.1671 0.0188 8.90 ,.0001

v*
(6) 2.0014 0.3373 5.93 ,.0001

 *
(1) 0.9582 0.0041 10.28‡ ,.0001†

Note—Wald tests are for H0 : θ  0 unless indicated otherwise. Basic 
drift parameters (1), (2), and (3) refer to the accuracy condition, and (4), 
(5), and (6) refer to the speed condition. Other parameters indexed with 
a (1) apply to the accuracy condition and with a (2) to the “speed” condi-
tion.  †Using Stram and Lee’s (1994) corrected reference distribution 
Z2 ∼ .5c2

0  .5c2
1.  ‡Testing H0 : *

(1)  1.

Table 9 
Fit Statistics From the Model Queue  

for 1 Participant (Example 2)

Model  Λ  df  ∆Λ  ∆df  p  AICc  BIC

1 23,516.8   14 23,545 23,642
2 23,213.64   20 303.14     6 ,.0001 23,254 23,393
3 23,153.26   60   60.38   40 .0202 23,274 23,692
4  23,086.12  351    67.14  291  .9999  23,821  26,236
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Appendix A 
Outlier Treatment Methods

Exponentially Weighted Moving Average Filter
The exponentially weighted moving average method (EWMA; Chandra, 2001; Roberts, 1959) is a statistical 

quality control method that can detect shifts in performance as RTs increase. A cutoff threshold is set where the 
performance is judged to be above chance level.

The first step in the application of the method is sorting the RTs from short to long. In effect, we will then 
look at our data set as if it described a binary process that unfolds (and changes) over time. As time progresses 
(i.e., as RT increases), the process will start to shift away from its “control state” (with 50% accuracy) and 
tend toward a biased process (with accuracy . 50%). The control process describes our expectation regarding 
fast guesses, which is straightforward: Guesses are draws from a Bernoulli process at chance level. Formally, 
if the sth observation (that is, the response X(s), corresponding to the sth sorted RT T(s)) is a guess, then X(s) ~ 
Bernoulli(0.5). The control process should be a credible representation of fast guesses, otherwise this method 
will not work. However, usually trials in an experiment are counterbalanced and randomized in such a way that 
participants cannot significantly exceed chance level accuracy without paying proper attention to the stimuli 
presented. If measures have been taken to avoid participants from being “cued” to a correct (or error) response 
even when guessing, it is reasonable to expect accuracy to be around 50% for fast guesses in a two-alternative 
forced choice task.

To determine the minimal RT at which the system no longer follows this control process, we take the RTs from 
all conditions (all RTs still sorted fast to slow), and analyze their corresponding responses. Of these responses, 
we iteratively compute the EWMA statistic cs  λxs  (1  λ)cs1, where xs  1 if the response corresponding 
to the sth sorted RT was correct and 0 otherwise, and λ ∈ (0,  1) is a weight parameter that controls how many of 
the last observations are used. If λ is 1, only the sth observation is used, and if λ approaches 0, all observations 
from the first to the sth are weighted equally. We will then, at each iteration, calculate the upper control limit 
(UCL) of this process, and check whether the EWMA statistic cs exceeds this value.

In practice, some constants need to be defined. The first is the in-control mean of the process, which in this 
context represents the expected average performance of a fast guess. We denote this parameter c0, and initialize 
it to 0.5. Second is the in-control standard deviation σ0 (standard deviation of X ), which is also equal to 0.5 (this 
follows from the properties of the Bernoulli distribution). A third constant for EWMA is the weight parameter λ. 
We choose λ 5 0.01, thereby accounting for many previous data points. The final constant is the width of the 
control limits (in standard deviations). To ensure a sensitive test, we set L to 1.5 (a relatively low value).

Given these parameters, we now compute cs and check whether it is smaller than the UCL: 

	 c UCL c Ls s
s< = +

−
− −



0 0

2

2
1 1σ λ

λ
λ( ) .	 (A1)

If this inequality is true, the process is judged to be within the limits of the control model, and we label observa-
tion s as a “fast guess.” When the UCL is exceeded, we decide that the probability of giving a correct response 
significantly exceeds 0.5 from this RT on, and stop the iteration process. The RT at which the UCL was breached 
is then taken as the threshold, and all RTs below it are censored.
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Appendix A (Continued)

The EWMA method is commonly illustrated with a control chart, which depicts the evolution of cs as a func-
tion of increasing RT. Figure A1 shows an example control chart, with the EWMA statistic indicated by a full 
line, the control state by a dotted line, and the control limits by a shaded region around the control state. This 
control chart is based on data that were generated from the parameters shown in Table 1 (Set A), with 250 data 
points in each condition, and 5% fast outliers added to the 200‑ to 400‑msec domain, uniformly distributed and 
with 50% accuracy. The EWMA algorithm returns a cutoff value of 322 msec, which is reasonable considering 
that the diffusion process with these parameters starts around 300 msec, but there are contaminants between 
200 and 400 msec.

Mixture Model Approach
The CDF of the diffusion model extended with the mixture model approach is

	 FX,T (x, t, q)  πDiff(x, t, q)  (1  π)γ  1–2U(t, T, T)
 (1  π)(1  γ)Pr(X  x | q)U(t, T, T),	 (A2)

where U(t, A, B) indicates the cumulative density function of a uniform distribution from A to B, evaluated 
at t. DiffX,T (x, t, q) is the joint probability that the response equals x (x 5 0 for an error and x 5 1 for a correct 
response) and that the response is given at time t or before, under a Ratcliff diffusion model with parameter 
vector q [thus, DiffX,T (x, t, q) 5 Pr(X  x, T  t | q]. The exact formula for this joint probability is provided in 
Tuerlinckx (2004, Equations 1, 2, and 3). Further, T and T are the minimum and maximum of the assumed 
RT distributions for contaminants. Technically, T and T are parameters, but in the remainder of this article we 
will not treat them as such. They are not included in the parameter estimation routine, but are directly estimated 
with the observed minimum and maximum RTs (for each condition and each participant), respectively.

Appendix B 
Minimizing the Multinomial Log-Likelihood Function

Loss Function
DMAT uses a multinomial likelihood function (MLF), which expresses the likelihood of observing a certain 

proportion of responses in a given number of RT bins, and should therefore be maximized in order to find good 
parameter estimates.

To define B RT bins, we select B1 monotonically increasing bin edges q1, . . . , qB1 and define q0 5 0 and qB  
. The observed frequency in bin b, in condition c, for response x, is then simply

O I q t qcxb b cxj b
j

ncx

= < ≤( )−
=

∑ 1
1

,

with ncx being the number of data points with response x in condition c. I() is the indicator function (which 
takes the value 1 if its argument is true and 0 otherwise). The predicted (or expected) proportion of x responses 
in bin b of condition c equals Pcxb 5 FX,T(x, qb, θc)  FX,T(x, qb1, θc), where θc indicates the parameter vector 
for condition c, and FX,T  is the CDF of the RDM or of the extended RDM (see Equation A2).

The negative log of the MLF that needs to be minimized is then defined as:
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We will henceforth refer to Equation B1 as the multinomial (log) likelihood function (MLF). During parameter 
estimation this will be the loss function we will be minimizing. An alternative to the MLF is the more common chi-
square loss function as described by Ratcliff and Tuerlinckx (2002). It is shown by Read and Cressie (1988) that both 
are intimately related. DMAT allows the user to choose between these two, but the MLF is the default option.

We give two final remarks about the loss function. First, in light of the recent discussion about the appropriate-
ness of fixed versus percentile-based boundaries to define the bins (see Brown & Heathcote, 2003; Heathcote 
& Brown, 2004; Heathcote, Brown, & Mewhort, 2002; Speckman & Rouder, 2004), in DMAT we have left 
the choice to the user. To briefly summarize this discussion: A statistic computed using percentile-based (data-
dependent) bin edges is not a true chi-square statistic. The practical consequence of this is that the ( p value of 
the) test statistic ∆Λ cannot be used for inference. There is also the third option of using fixed bin edges calcu-
lated from the average percentile-based bins over a wide range of parameter values (and this is the default choice 
in DMAT). The fits reported in this article are based on these realistic bin boundary values but as said before, 
the user can opt for another method.

A second remark is that some parameters in the model cannot take all possible real values and this may lead to 
numerical difficulties during the optimization. There are several possible strategies to avoid these problems, but in 
the estimation algorithm we simply define that Λθ  1010 if the parameter set θ is outside the allowable parameter 
space. This penalty value ensures that the optimization algorithm will remain inside the parameter space.
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Appendix B (Continued)

Optimization
In this subsection, we discuss three aspects of our optimization procedure: the starting points, the algorithm, 

and ways to avoid local minima.
First, we use a method of moments to produce a good initial estimate of the parameters. If the user of DMAT 

did not provide the algorithm with a starting guess, DMAT uses the estimates from the EZ-diffusion model 
(Wagenmakers et al., 2007) to generate a plausible starting point for the first model in the queue. For subsequent 
models in a queue, DMAT uses the final estimates of the previous model as starting point (if necessary, a linear 
transformation or regression will be applied to ensure that this initial guess does not violate any restrictions of 
the present model). For the parameters of the RDM that are not represented in the EZ-diffusion model, we make 
the following (arbitrary) guesses: h 5 0.2, z  1–2a, sz  9–20a, and st  9–10Ter.

Second, the algorithm we use to find the optimum of the loss function is the Nelder–Mead simplex algorithm 
(NMS algorithm; Nelder & Mead, 1965), with a few adaptations. In our algorithm, we allow a single NMS run to 
proceed for 200 steps, after which the size of the simplex shape is reset to its original size. We do this because we 
have observed that (due to numerical issues) the optimizer sometimes converges in a local minimum. Resetting 
the simplex size allows the algorithm to escape from such local minima. Usually, the simplex size is reset three 
times, thus performing four runs with maximally 200 steps. When these are finished, we start a fifth, longer, 
NMS run with maximally 5,000 iterations; usually, however, the last NMS run converges before that. DMAT 
users can change the number of NMS runs, as well as the maximum number of iterations allowed. The final 
phase of the algorithm is a single quasi-Newton step, where the first and second derivatives of the objective are 
numerically approximated and used to find the local minimum near the point where the NMS run converged. 
This provides us with a numerical approximation to the Hessian matrix (the matrix of second derivatives) at 
the minimum, which is then used to verify that the solution point is in fact a minimum (the Hessian should be 
positive definite), and to calculate estimates of parameter standard errors.

Third, we incorporate another strategy for identifying and escaping suspected local minima. The fact that the 
algorithm has converged to a minimum is still no guarantee that we have in fact found optimal parameter esti-
mates. A better parameter set might still exist in a region that our algorithm has not visited. This is a very difficult 
problem and it is not possible in general to give strong guarantees about the optimality of a set of estimated pa-
rameters. Local minima seem to exist near those boundaries of the parameter space where any of the variability 
parameters h, st, or sz are zero (although it is possible that this is a true minimum for some data sets).

To avoid local minima, the algorithm performs a jump when the variance parameters are estimated to zero 
(sz and st will be changed to half of their maximal value, and η will be, arbitrarily, reset to 0.2). After making this 
jump, the NMS is restarted. In our experience, with this identify-and-jump strategy the algorithm often succeeds 
in locating a better point in the parameter space.

(Manuscript received October 3, 2006; 
revision accepted for publication June 6, 2007.)


