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Abstract

The Wiener diffusion model, and its extension to the Rat-
cliff diffusion model, are powerful and well developed
process accounts of the time course of human decision-
making in two-choice tasks. Typically these models have
been applied using standard frequentist statistical meth-
ods for relating model parameters to behavioral data. Al-
though this approach has achieved notable successes, we
argue that the adoption of Bayesian methods promises
to broaden the scope of the psychological problems the
models can address. In a Bayesian setting, it is straight-
forward to include linear, non-linear, and categorical co-
variates of the basic model parameters, and so provide a
much richer characterization of individual differences, the
properties of stimuli, the effects of task instructions, and
a range of other important issues. In this paper, we pro-
vide an example of the Bayesian possibilities by applying
the Ratcliff diffusion model to a benchmark data set in-
volving a brightness discrimination task. We simultane-
ously use a categorical covariate and nonlinear regression
to model the psychophysical function in a theoretically
satisfying way. We also use Bayesian inference on latent
class assignment variables to identify and accommodate
contaminant data at the level of individual trials, catego-
rizing them as ‘diffusion’ trials, ‘guesses’, and ‘delayed
startup’ trials. Using our application as a concrete ex-
ample, we discuss the potential benefits of applying the
Bayesian framework to process models in the cognitive
sciences.
Keywords: Diffusion model; Wiener diffusion; Bayesian
inference

Introduction
One area of the cognitive sciences that has many formal
models is that of choice reaction time (RT), particularly
when the number of choices is restricted to two (Bogacz,
Brown, Moehlis, Holmes, & Cohen, 2006). The practi-
cal application of many of the available models, however,
has historically been hampered by computational diffi-
culties (e.g., Vandekerckhove & Tuerlinckx, 2007). This
is particularly the case for one prominent class of mod-
els based on diffusion processes, including the Wiener
diffusion model (Link & Heath, 1975) and its popular
extension, the Ratcliff diffusion model (Ratcliff, 1978;
Wagenmakers, 2008).

For the latter model, several pieces of software have
been published to aid in fitting these models to data
(Vandekerckhove & Tuerlinckx, in press; Voss & Voss,
2007). Nevertheless, the application of statistical mod-
els to the diffusion parameters with these programs is, at
present, restricted to the application of linear constraints

(such as ANOVA or polynomial regression). The spec-
trum of possible applications of the diffusion model is
much broader than that. In this paper we employ psy-
chophysical curve fitting and latent class assignments in
a Bayesian1 treatment of the diffusion model, as an ex-
ample of how Bayesian methods can broaden the class of
psychological problems diffusion models can address.

The structure of the paper is as follows. We first
describe the Wiener and Ratcliff diffusion models as
process accounts for two-choice RT. We then report
an example diffusion model analysis using Bayesian
methods—based on previously studied data relating to
a brightness discrimination task—that would be highly
challenging to implement in a classical frequentist con-
text. We also demonstrate using this example that the
Bayesian approach can be successfully applied to rela-
tively small sample sizes. Finally, we discuss the power
and generality of the Bayesian approach for extending
the potential of process models in the cognitive sciences.

Diffusion Models
The Wiener Diffusion Model
The Wiener diffusion model as a process for speeded de-
cisions starts from the basic principle of accumulation of
information (e.g., Link & Heath, 1975). When an indi-
vidual is asked to make a binary choice on the basis of an
available stimulus, the assumption is that evidence from
the stimulus is accumulated over (continuous) time and
a decision is made as soon as an upper or lower bound-
ary is reached. Which boundary is reached determines
which response is given, and the number of accretion
steps taken is related to the RT.

Figure 1 depicts the diffusion process, and shows the
main parameters of the process. On the vertical axis there
are the boundary separation a, indicating the level of ev-
idence required to make a response (i.e., speed-accuracy
trade-off) and the starting point z0, indicating the a pri-
ori status of the evidence counter. The arrow represents
the average rate of information uptake or drift rate ξ,
which indicates the average amount of evidence that the

1We want to emphasize that we are using Bayesian methods
as a framework for statistical inference, and not as a set of the-
oretical assumptions about how humans make inferences. This
means we are not proposing a ‘rational’ or ‘computational-
level’ model of cognition, despite our reliance on Bayesian
methods of inference.
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Figure 1: A graphical illustration of the diffusion model.
Note that z0 = a× b. In the Ratcliff diffusion model, b,
ter, and ξ vary from trial to trial. The probability density
for a correct response given at time t is shown as d(t).

observer receives from the stimulus at each sampling.
Finally, the short dashed line indicates the nondecision
time ter, the time used for everything except making a
decision (i.e., encoding the stimulus and physically exe-
cuting the response).

It is important to note that, considering the Bayesian
statistical context of this article, it will be more conve-
nient to use a different parametrization of the process.
We will therefore not consider the starting point z0, but
rather use the initial bias b, defined as b = z0/a. With
these parameters, the joint probability distribution of the
RT and accuracy (i.e., the likelihood function) is Equa-
tion (1) at the top of the page.

The Ratcliff diffusion model
Despite the elegance of the basic Wiener process as an
account of the time course of decision-making, the evo-
lution of diffusion models has involved a series of ad-
ditional assumptions. These have all been intended to
address shortcomings in the ability of the basic model to
capture empirical regularities observed in data from hu-
man decision-making experiments.

One important change has been the introduction of
additional noise processes to capture cross-over effects.
‘Cross-over effects’ refer to the observation that errors
can sometimes be, on average, faster than correct deci-
sions, but other times are as slow or slower. These pos-
sibilities are not accommodated by the basic model in
Figure 1 without allowing for variation in the parame-
ters. Accordingly, to predict fast errors, the basic model
is extended by assuming that the starting point is sub-
ject to between-trial variation, and so is convolved with

a mixing distribution. Similarly, to predict slow errors,
it is assumed that the mean drift rate is also subject to
between-trial variation, and so is convolved with a Gaus-
sian distribution.

Additionally, for empirical reasons the nondecision
time is assumed to vary from trial to trial, usually ac-
cording to a uniform distribution. These three noise
processes are parameterized with the standard sufficient
statistics (mean and variance of a Gaussian or mean and
range of a uniform), which become additional parame-
ters of the model. When the Wiener diffusion model is
extended with trial-to-trial variabilities such as these, it is
often called the Ratcliff diffusion model (Wagenmakers,
2008). This extended model comes with a much greater
computational burden, see Tuerlinckx (2004) and Van-
dekerckhove and Tuerlinckx (2007).

Notation In this paper, we will use X and T to refer to
the accuracy and RT variables, and x and t for specific
instances of these variables. We will sometimes write
T ∗ and t∗ to refer to response vectors (X ,T ) and (x, t),
respectively. We will use indices i (i = 1, . . . , I) and j
( j = 1, . . . ,J) to indicate conditions and k (k = 1, . . . ,K)
for trials within conditions. To indicate a vector, we
will use a bold font, so that a is the matrix of bound-
ary separations, in all conditions and all trials. We use
the symbol ∼ to denote “is distributed according to”, so
that t∗i jk ∼ WienerX ,T (ai jk, ter

i jk,bi jk,ξi jk) and the propor-
tionality symbol ∝ to denote “is proportional to”.

Application to Benchmark Data
To illustrate the advantages and the potential of ap-
proaching diffusion models from a Bayesian perspec-
tive, we revisit a benchmark data set (Ratcliff & Rouder,
1998). In addition to fitting five parameters of the Rat-
cliff diffusion model2, we also perform a non-linear re-
gression and a latent class assignment.

Data Set
In the experiment by Ratcliff and Rouder (1998), there
were two manipulations of interest. First, there was a
speed-accuracy instruction (participants were either in-
structed to be fast or to be accurate) and second, there
was a manipulation of brightness. The task was a 2AFC
procedure, whereby each participant was shown a stim-
ulus and had to judge whether this stimulus was drawn
from a ‘bright’ distribution or from a ‘dark’ distribution
(the two distributions overlapped significantly, so sub-
jects could not be highly accurate; in total, there were 33

2We assume an unbiased diffusion process, so that b = 0.5.



different levels of brightness, ‘1’ being completely dark
and ‘17’ being completely ambiguous). Feedback was
given after each trial. There were three participants (la-
beled KR, JF, and NH), and the experiment ran over the
course of 11 days. After preprocessing3, there were a
varying number of trials in each cell of the design, but
the total was around 8,000 for each participant.

From the manipulations, we can expect two things.
First, we expect that the speed-accuracy instruction will
have an effect on boundary separation. Secondly, we
expect that the brightness of the stimulus influences the
drift rate. Furthermore, it is likely that the data set will
contain at least some contaminant data, which we de-
fine as data points that are not generated by the process
of interest and are hence not completely germane to the
research question. In line with previous work, we will
consider two types of contaminants: guesses and delayed
startups (Vandekerckhove & Tuerlinckx, 2007).

Bayesian Modeling
We implemented a Bayesian analysis of the brightness
discrimination task data using the graphical model pre-
sented in Figure 2. Graphical models (see Griffiths,
Kemp, & Tenenbaum, in press; Lee, 2008, for psycho-
logical introductions) are a convenient language for de-
scribing the probabilistic relationship between parame-
ters and data. In a graphical model, variables of in-
terest are represented by nodes in a graph, with chil-
dren depending on their parents. Circular nodes rep-
resent continuous variables, square nodes discrete vari-
ables, shaded nodes observed variables, and unshaded
nodes unobserved variables. In addition, plates enclose
parts of a graph to denote independent replication.

An important practical advantage of adopting the
graphical model formalism is that it allows our model-
ing to be implemented using WinBUGS (Lunn, Thomas,
Best, & Spiegelhalter, 2000). This makes it straightfor-
ward to perform full Bayesian inference computation-
ally, using standard MCMC methods to sample from the
posterior distribution.

We now explain the graphical model in Figure 2, high-
lighting the way in which it addresses important psycho-
logical problems, including accounting for contaminants
in data, relating the physical and psychological proper-
ties of stimulus, and allowing for trial-to-trial variability
in performance.

Latent Classes The Bayesian approach makes it easy
to apply latent predictors to data. In the model in Fig-
ure 2, we have assumed that there are three types of ex-
perimental trials: (1) Diffusion trials (with probability
1− π), (2) guesses (probability π(1− γ)), and (3) de-
layed startups (probability πγ). A similar distinction was
applied by Vandekerckhove and Tuerlinckx (2007). This

3We applied similar preprocessing as Ratcliff and Rouder
(1998), removing all trials from the first day, the first 20 trials
of the other days, and the first trial of each block. In contrast to
their analysis, we did not remove any trials based on an extreme
RT.

aj

vsh

j

pijk gijk

t∗ijk

vij

ξijk

si

vhi vlo vsc

π γ

η

T er

σer

T ds

σds

k trials

i stimuli

j conditions

Figure 2: Graphical model representation of our
Bayesian analysis of the Ratcliff diffusion model against
the benchmark brightness discrimination data.

categorical distinction is latent because we have no di-
rect measures of class membership. Most powerfully,
the Bayesian approach allows us to estimate each trial’s
probability of membership to each of these (mutually ex-
clusive) classes, so that we can identify specific trials
that might be contaminants. Class memberships are in-
dicated by two binary variables, pi jk ∼ Bernoulli(π) and
gi jk ∼ Bernoulli(γ).

Applying this latent class assignment implies that we
assume that three distinct psychological processes ac-
count for the data. The first is a typical diffusion pro-
cess. The second is a diffusion process devoid of rele-
vant information (a guess); That is, the participant has
not gained any information from the stimulus and the re-
sponse is therefore at chance level. In terms of diffusion
model parameters, this translates to the assumption that
all ξi jk = 0 if pi jk(1−gi jk) = 1. The third psychological
process is one of delayed startups, where trials have a
different non-decision time.

The Non-linear Regression of Drift Rate In psy-
chophysics, it is common to perform nonlinear regres-
sion to model the effect of stimulus dimensions on ac-
curacy, often using a Weibull link function. Because
it seems natural that drift rates have similar asymptotic
behavior as a function of stimulus intensity, our model
applies a Weibull. For the ith brightness condition (i =
1, . . . ,33) and jth speed/accuracy instruction, then

vi j = vlo +
(

vhi− vlo
)
×

(
1− exp
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Note that we allow the shape parameter vsh to be different
between the speed/accuracy conditions. This is contrary
to Ratcliff and Rouder (1998), who assumed mean drift
rates to be equal for equal stimulus intensities.

Variability in Performance In order to extend the
Wiener distribution to the Ratcliff diffusion model, the
graphical model in Figure 2 implements a mixed-model
version of the Wiener distribution. This means that, from
trial to trial, some parameters are conditionally indepen-
dent draws from a mixing distribution. By conceptual-
izing the Ratcliff diffusion model in this way, we can
avoid the computationally intense integrals described in
Tuerlinckx (2004), and approximate the integrals using
standard MCMC computational methods used to inte-
grate over the posterior. The simplification offered by
this approach allows us to choose theoretically plausible
mixing distributions, so we choose a Gaussian mixing
distribution for drift rate and a truncated Gaussian for
nondecision time.

This combination of assumptions in the graphical
model can be formally stated as follows:

if pi jk = 0
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,

where N and TN stand for normal and truncated normal
distributions, respectively.

Results
All of our analyses are based on 40,000 posterior sam-
ples collected after a burn-in of 10,000 samples. First,
we investigate recovery of the model by inspecting poste-
rior predictive samples (we limit ourselves to data of par-
ticipant KR, but results were similar for the others). The
two panels in Figure 3 show the proportion of ‘bright’ re-
sponses in the data (open circles) and as recovered by the
model (grey dots; the full line connects the mean predic-
tions). Similarly, in Figure 4, we show posterior predic-
tives of the 10th, 30th, 50th, 70th, and 90th percentiles
of each RT distribution. In all panels, it is clear that the
model recovers the patterns in the data quite well. The
exception is the 10th RT percentile in the speed condi-
tion, which the model consistently overestimates. This
may be due to our restriction that b = .5 and does not
vary from trial to trial.

Looking at the posterior means and standard devia-
tions for the standard Ratcliff diffusion model param-
eters (for participant KR) in column A of Table 1, we
see that the boundary separation parameter a is much
smaller in the speed-instruction condition (a1 = 0.05), as
expected. The Weibull asymptote parameters, as well as
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Figure 3: Posterior predictive proportions of ‘bright’ re-
sponses, as a function of stimulus intensity. Grey dots
indicate 100 posterior samples, open circles indicate the
proportions in the data set. Black dots at top and bot-
tom indicate observed data points (jittered). Thick dark
lines connect the posterior mean estimate of the response
probabilities in each condition.

the scale parameter, get sensible mean posterior values.
Interestingly, the shape parameter is somewhat differ-
ent between the two instruction conditions, with steeper
Weibull functions in the speed-stress condition.

Figure 5 shows posterior distributions of the π, γ, and
vsh, for each participant. The difference in vshs is small in
two participants, but large for JF, and it seems consistent
between participants.

Participant KR has the highest π parameter—the pos-
terior mean is about .006. Looking at this participant’s
γ parameter, we see that there is much uncertainty re-
garding the proportion of guesses (because this parame-
ter pertains to only .6% of the data—43 trials), but there
are likely more delayed start-ups (28) than guesses (15).
The delayed start-up trials are on average 858 ms slower
than regular trials. If we compare the first two columns
in Table 1, it appears that accounting for contaminants
in this data set makes little difference for the mean esti-
mates of the parameters. The posterior uncertainty of the
drift-related parameters, however, is higher in the more
complicated contaminant-mixture model.

Sample Size
Typically, applying the Ratcliff diffusion model requires
“a fair amount [sic] of data for accurate estimation of
its parameters” (Wagenmakers, 2008). By constraining
parameters across conditions and using a Bayesian ap-
proach with modern computational sampling methods,
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we expect the need for large data sets to be alleviated.
To test this possibility, we conducted analyses based on
subsampling from the benchmark data, and comparing
the results with the results from the full data set.

To subsample from the original data set, we
sampled—without replacement—either 2, 5, 10, or 20%
of the data points for participant KR; thus approximately
preserving the relative number of data points in each con-
dition. We then applied a model that is similar to the
one described in the previous section (see Fig. 2), but
we leave out the contaminant modeling (π = 0) because
of the low proportions of contaminants found. We drew
5,000 samples from the joint posterior, after a burn-in
of 5,000. For each parameter, we compute the posterior
mean. This procedure was repeated 20 times for each
proportion, with new subsamples each time. Then, with
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the mean posterior estimates resulting from each of the
smaller data sets, we computed the squared relative bias
R2 for each parameter: R2

θ =
(
(θ− θ̂)/θ

)2
, where θ in-

dicates the parameter as estimated from the full data set
(with the same model containing no contaminant com-
ponent) and θ̂ as estimated from the smaller data set.
We summed the R2s for each parameter set to obtain a
measure of how close the recovered parameters of each
subsample were to the ones found from the full data set.
From each downsampling proportion (2, 5, 10, and 20%),
we then chose the results that gave the median recovery
under the R2 criterion, and report those results in Table 1.

As can be seen, most of the estimates from the re-
duced data sets are very similar to those inferred from
the full data set, and they certainly preserve all of the im-
portant order relations and trends in the parameter values
across conditions. With few data, posterior uncertainty is
very large. As expected from statistical theory, the pos-
terior standard deviations scale up with a factor

√
Nt/Ns,

where Nt is the total sample size and Ns the size of the
subsample.

Conclusions
In this paper, we demonstrated a Bayesian extension of
the popular Ratcliff diffusion model. In a single example,
we combined a psychophysical link function and latent
class assignment to revisit the benchmark data set of Rat-
cliff and Rouder (1998). As part of the Bayesian method,
we employed posterior predictive checks (shown in fig-



Table 1: Some results for participant KR. Posterior
means in top half; Posterior standard deviations in bot-
tom half. SDs have been multiplied by 100.

A∗ B∗ 2% 5% 10% 20%
T er 0.25 0.25 0.23 0.26 0.25 0.25
a1 0.05 0.06 0.07 0.05 0.05 0.05
a2 0.21 0.21 0.20 0.22 0.24 0.23
η 0.11 0.12 0.08 0.14 0.16 0.16

σer 0.03 0.03 0.04 0.04 0.03 0.04
vhi 0.59 0.57 0.43 0.67 0.77 0.71
vlo -0.55 -0.53 -0.63 -0.74 -0.62 -0.60
vsc 0.57 0.56 0.48 0.56 0.63 0.60
vsh

1 3.02 3.07 4.89 2.39 2.20 2.75
vsh

2 2.26 2.33 1.83 1.87 1.95 2.32
T er 0.14 0.14 1.11 0.73 0.42 0.34
a1 0.08 0.08 0.67 0.41 0.25 0.20
a2 0.32 0.32 2.10 1.56 1.18 0.89
η 0.69 0.66 5.07 3.40 2.18 1.83

σer 0.08 0.08 0.70 0.36 0.25 0.19
vhi 3.72 2.88 8.73 12.75 8.71 9.45
vlo 1.95 1.80 12.83 8.66 6.70 4.95
vsc 1.34 1.04 3.22 4.89 3.59 3.09
vsh

1 24.84 22.80 241.43 71.83 40.83 54.36
vsh

2 9.77 9.40 49.30 29.10 25.52 24.62
∗ A is with outlier treatment; B is without outlier treatment.

ures 3 and 4) of the model. We found that few of the
data points are contaminants. Interestingly—and in con-
trast to previous analyses—we also found differences in
drift rate as an effect of task instruction. In particular,
drift rate as a function of stimulus quality increases more
steeply under speed-stress than it does under accuracy-
stress. In addition, we reported a simple numerical ex-
periment that showed that relatively small samples can
yield satisfactory parameter estimates. This suggests that
the Ratcliff diffusion model may, using Bayesian meth-
ods, be applied to smaller data sets than was previously
practicable.

We think many of the specific demonstrations in our
example correspond to general points regarding the use-
fulness of Bayesian statistical methods for understand-
ing process models in the cognitive sciences. At the
most general level, the Bayesian framework for scien-
tific inference allows enormous freedom in building pro-
cess models. All that is required is a formal probabilistic
account of how observed data are generated. Once this
modeling has been done, and data are available, making
inferences is the (conceptually) easy process of reversing
the generative process, and inferring which combinations
of parameters are likely to have given rise to the data. Im-
portant issues like balancing goodness-of-fit with com-
plexity, assessing sensitivity to prior information, con-
ditioning on nuisance variables, and so on, are all dealt
with completely and coherently because Bayesian infer-
ence has a principled basis in probability theory.

More practically, Bayesian methods, especially
through the use of graphical models or other languages

that permit the use of modern computational methods
for posterior sampling, make it straightforward to under-
take analyses that are psychologically rich, but otherwise
difficult to implement. For example, mixture models—
including especially latent assignment models—allow
data in a task to be modeled as having been generated
by more than one psychological process. Complex re-
gression structures are straightforward to implement and
variability across trials is easily formalized in a Bayesian
account.

The ability of Bayesian methods in our example to ex-
tend the scope of well-developed and widely-used diffu-
sion process accounts of decision-making is very promis-
ing. It suggests that Bayesian methods can be applied
widely to process models throughout the cognitive sci-
ences, broadening the set of psychological questions
these models can be used to answer.
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