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Joachim Vandekerckhove, Extensions and applications of the diffusion model for
two-choice response times. Dissertation submitted to obtain the degree of Doctor
of Philosophy in Psychology, April 2009. Promoter: Prof. Dr. F. Tuerlinckx.

Two-choice response time data (2CRT) is one of the most common formats of em-
pirical data in experimental psychology. Unfortunately, such data do not adhere to the
requirements of standard statistical models (such as the general linear model). The main
goal of this thesis is to develop, extend, and apply methods for the analysis of 2CRTs
on the basis of diffusion process models.

The diffusion process is a generalization of a standard random walk to continuous
time and with a continuous state space. In our applications, we will always consider
one-dimensional diffusions—a mathematical formalism to describe continuous changes
in a scalar value over time. The central dogma of the diffusion model framework is that
this fluctuating number represents an abstract ‘evidence counter’. It is further assumed
that the decider executes a response as soon as one of two boundaries is crossed, that
the diffusion process may drift towards one of these boundaries at a lesser or greater
rate, and that the process may be biased to start at a value near or far from a certain
boundary. The challenge in diffusion modeling then lies in recovering the numerical
values of these boundaries, the drift rate, and the bias, given only the times at which
each boundary was hit. This challenge, and variations on the theme, are the focus of
this thesis.

In the Introduction, we give a brief introduction to the general problem of ana-
lyzing two-choice response times, and a bird’s-eye overview of the five chapters of the
dissertation.

In Chapter 1, we describe a general method for fitting a diffusion model to empirical
data. This method extends existing methods with a flexible way to constrain parameters
across experimental conditions. Using design matrices as a constraining framework, this
Chapter also discusses issues of statistical inference as applied to the design matrix
method for diffusion models. Additionally, strategies are presented for handling outliers
and contaminants—observed data points that are not generated by the decision process
of interest. We demonstrate this collection of methods with several real examples.

In Chapter 2, we introduce and describe the Diffusion Model Analysis Toolbox, a
MATLAB toolbox that accompanies the design matrix method outlined in Chapter 1.

Until this point, we had only considered classical, ‘frequentist’ methods for statistical
inference. In Chapter 3, we move to the more general Bayesian statistical framework
and demonstrate that this framework allows for more flexibility in modeling. We also
experienced fewer numerical problems using Bayesian estimation methods.

The novel Bayesian methods proved most useful in extending the diffusion model into
a hierarchical framework, which we describe in Chapter 4. The hierarchical Bayesian
diffusion model allows for the inclusion of random effects—something which would be
technically possible, but highly impractical in a frequentist framework. The inclusion of
random effects permits us to pool data across stimuli or participants that otherwise share
nothing beyond being random draws from a common superpopulation. The random
effects concept allows for more robust estimation, and it has the added virtue of being
an accurate representation of the sampling scheme used in many empirical studies. The
possibility of accounting for individual differences inside a population while retaining a
conceptually interesting process model as the measurement level makes the hierarchical
diffusion model an instance of cognitive psychometrics.

Finally, in Chapter 5, we apply this novel method to a large data set, relating
two-choice reaction times to semantic properties of the stimulus items. While the clas-
sical analysis, involving mainly general linear modeling, painted a heterogeneous and
confusing picture, the hierarchical diffusion model approach succeeded in disentangling
different sources of variability between items.
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Binaire keuzereactietijden komen erg vaak voor in de experimentele psychologie.
Helaas voldoet dit soort gegevens niet aan de vereisten en assumpties van statistische
standaardmodellen zoals het general linear model. Het hoofddoel van deze thesis is
het ontwikkelen, uitbreiden, en toepassen van methoden voor de analyse van binaire
keuzereactietijden op basis van diffusieprocesmodellen.

Het diffusieproces is een toevalsbeweging in continue tijd en in een continue ruimte.
In onze toepassingen gaat het telkens om ééndimensionale diffusies—een wiskundig for-
malisme om continue veranderingen in een scalaire waarde over de tijd uit te drukken.
Het centrale dogma van het diffusiemodelkader is dat dit variërende getal gekoppeld kan
worden aan een abstracte ‘evidentieteller’. Verder wordt aangenomen dat de beslisser
een respons uitvoert zodra deze teller één van twee grenzen overschrijdt, dat het diffu-
sieproces preferentieel naar één van deze grenzen kan wegdrijven en dat het startpunt
van het proces dichter bij de ene grens dan de andere kan liggen. De uitdaging van
diffusiemodelleren ligt erin de waarden van deze grenzen, van de drijfkracht en van de
a priori voorkeur terug te vinden op basis van enkel de latentietijden waarop de grens
werd geraakt. Deze uitdaging, en varianten ervan, zijn het onderwerp van deze thesis.

In de Introduction geven we een korte inleiding tot het algemene probleem met het
analyseren van binaire keuzereactietijden, alsook een overzicht van de vijf hoofdstukken
van de dissertatie.

In Chapter 1 beschrijven we een algemene methode voor het passen van een dif-
fusiemodel aan empirische gegevens. Deze methode breidt bestaande methoden uit met
een flexibele manier om parameters constant te houden tussen experimentele condities.
Met ontwerpmatrices als kader, bespreken we in dit Chapter ook statistische inferentie
voor diffusiemodellen. Daarnaast stellen we enkele strategieën voor waarmee uitbijters
en contaminanten—data die geobserveerd zijn maar die niet voortkomen uit het bestu-
deerde beslissingsproces—kunnen worden behandeld. We demonstreren deze methoden
met enkele voorbeelden.

In Chapter 2 wordt de Diffusion Model Analysis Toolbox voorgesteld: een MAT-
LAB toolbox die toelaat de ontwerpmatrixmethode uit Chapter 1 toe te passen.

Tot hiertoe werden enkel de klassieke, ‘frequentistische’ methoden voor statistische
inferentie gebruikt. In Chapter 3 verplaatsen we ons naar het meer algemene Baye-
siaanse kader en tonen hoe dit kader een grotere flexibiliteit toelaat in het modelleren.
De Bayesiaanse schattingsmethoden leidden ook tot minder numerieke problemen.

De Bayesiaanse methoden maakten het ook eenvoudiger om het diffusiemodel in een
hiërarchisch kader uit te breiden. Dit beschrijven we in Chapter 4. Het hiërarchische
Bayesiaanse diffusiemodel maakt het mogelijk om toevalseffecten toe te voegen. In een
frequentistisch kader zou dit weliswaar mogelijk, maar zeer onpraktisch zijn. Met behulp
van deze formulering met toevalseffecten kunnen we gegevens van verschillende condities
of deelnemers samenbrengen—zelfs als die niets méér gemeen hebben dan hun lidmaat-
schap van een grotere groep of categorie. Het werken met toevalseffecten zorgt voor meer
robuste schattingen en heeft als belangrijke meerwaarde dat het een getrouwe weergave
is van de manier waarop deelnemers en stimuli in de praktijk geselecteerd worden. De
combinatie van een interessant, interpreteerbaar procesmodel als meetniveau met het
ondervangen van individuele verschillen maakt van het hiërarchische diffusiemodel een
voorbeeld van cognitieve psychometrie.

In Chapter 5 passen we deze nieuwe methode toe op een grote gegevensset waarin
binaire keuzereactietijden worden gekoppeld aan semantische eigenschappen van de sti-
muli. Terwijl de klassieke analyse—op basis van lineaire modellen—een heterogeen en
oninterpreteerbaar beeld schetste, konden we dankzij de toepassing van een hiërarchisch
diffusiemodel verschillende bronnen van variabiliteit tussen items ontwarren.





Finalement, finalement

Il nous fallut bien du talent

Pour être vieux sans être adultes





Acknowledgements

The present dissertation is the fruit of collaborations and discussions

with a host of admirable people, many of whom the author counts among

his friends. Most prominent among these scientific collaborators are, in

randomised order: Scott Brown, Eric-Jan Wagenmakers, Steven Verheyen,

Andrew Heathcote, Michael Lee, Roger Ratcliff, Zita Oravecz, Francis

Tuerlinckx, Gilles Dutilh, Ruud Wetzels, and Jeff Rouder.

A special mention is warranted of the entire Research Group for Quan-

titative Psychology and Individual Differences, where for three most en-

joyable years I was able to feel free to engage in the projects that captured

my interest. The unforgettable measure of joviality, warmth, and collegia-

lity with which members of the group are received, together with a unique

combination of professional and traditional values, have contributed to the

research group’s well-earned reputation.

Much of the work presented here would have been impossible without

the logistic assistance provided by Emmy Bergen and Véronique Lim-
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Van Rensbergen, and Noël Bovens), and material contributions from FWO

(for travel grants to Irvine, CA, and Amsterdam), LUDIT (for the high-

performance computing facilities), and Dell Inc. and Microsoft Corp. (for

additional computing resources and software).

On the personal level, it is obvious that none of this would have been

possible without the constant and unconditional support that my family

is always ready to provide. With gratitude, I dedicate this thesis to these

excellent people who have made me who I am.

Finally, particular thanks also go out to all those fantastic individuals



x

whose friendship I have been most fortunate to enjoy in recent years and,

no doubt, in years to come. This is a shout-out to Yannick G., Hilde M.,

Nicolas A., Guy M., Zita O., Johannes K., Ellen G., Caroline S., and Joris

G. Then there are those friends whom I think of as my posse, with whom

I graduated and who remain close friends. Cheers to Wim M., Johan B.,

Tom W., Inneke K., Kenny B., Robbe G., Hannelore G., Ben S., and Tom

T. Last but not least, where would I be without the companionship of (still

in randomised order), Amber W., Laura O., Emma M., Julie A., Femke

N., Marie I., Britt S., Charlotte E., Lisa R., Lotte I., Sarah N., Jolien D.,

Hanne E., Jana E., and Eline D. You all mean more to me than I ever

seem to find the opportunity to tell you.

Joachim Vandekerckhove

Leuven, 1 April 2009



Contents

Introduction 1

The strangeness of reaction times . . . . . . . . . . . . . . . . . . 2

Formally strange . . . . . . . . . . . . . . . . . . . . . . . . 2

Conceptually strange . . . . . . . . . . . . . . . . . . . . . . 4

Diffusion models . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Meet the family: Sequential sampling models . . . . . . . . 5

The one-dimensional cousins . . . . . . . . . . . . . . . . . . 5

Parameters of a one-dimensional random walk . . . . . . . . 6

The Wiener diffusion model . . . . . . . . . . . . . . . . . . 9

The diffusion model for two-choice reaction times . . . . . . 9

Some nuance . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Cognitive psychometrics . . . . . . . . . . . . . . . . . . . . . . . 11

Final considerations . . . . . . . . . . . . . . . . . . . . . . . . . 13

Publication list . . . . . . . . . . . . . . . . . . . . . . . . . 13

Helpful references . . . . . . . . . . . . . . . . . . . . . . . . 15

xi



xii Contents

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1 Fitting the Ratcliff diffusion model to experimental data 21

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.2 The Ratcliff diffusion model . . . . . . . . . . . . . . . . . . 25

1.2.1 Parameters of the model . . . . . . . . . . . . . . . . 25

1.2.2 Some notational conventions . . . . . . . . . . . . . 27

1.3 The design matrix method . . . . . . . . . . . . . . . . . . . 28

1.4 Statistical inference: Estimation . . . . . . . . . . . . . . . 32

1.4.1 Outlier handling strategies . . . . . . . . . . . . . . 33

1.4.2 The loss function . . . . . . . . . . . . . . . . . . . . 34

1.5 Statistical inference: Testing and model selection . . . . . . 35

1.5.1 The Wald test for a hypothesis about single parameter 36

1.5.2 Comparing two nested models . . . . . . . . . . . . . 36

1.5.3 Comparing non-nested models . . . . . . . . . . . . 38

1.6 The Diffusion Model Analysis Toolbox . . . . . . . . . . . . 38

1.7 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.7.1 Asymptotic parameter recovery . . . . . . . . . . . . 40

1.7.2 Preasymptotic parameter recovery . . . . . . . . . . 41

1.7.3 Outlier handling strategies . . . . . . . . . . . . . . 42

1.7.4 Power analyses . . . . . . . . . . . . . . . . . . . . . 44

1.8 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

1.8.1 Example 1: An incomplete factorial ANOVA design 49

1.8.2 Example 2: A linear regression design . . . . . . . . 54

1.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

1.A Outlier Treatment Methods . . . . . . . . . . . . . . . . . . 64

1.B Minimizing the Multinomial Log-Likelihood Function . . . . 68



Contents xiii

2 Diffusion Model Analysis with MATLAB: a DMAT primer 75

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.2 The Ratcliff diffusion model . . . . . . . . . . . . . . . . . . 77

2.3 Matrix notation and design of experiments . . . . . . . . . . 78

2.4 The Diffusion Model Analysis Toolbox . . . . . . . . . . . . 79

2.4.1 Requirements . . . . . . . . . . . . . . . . . . . . . . 79

2.4.2 Installation . . . . . . . . . . . . . . . . . . . . . . . 80

2.4.3 End User License Agreement . . . . . . . . . . . . . 80

2.5 Usage and examples . . . . . . . . . . . . . . . . . . . . . . 81

2.5.1 Two interfaces . . . . . . . . . . . . . . . . . . . . . 81

2.5.2 Data sets . . . . . . . . . . . . . . . . . . . . . . . . 81

2.5.3 General usage of the toolbox: Command interface . 81

2.5.4 General usage of the toolbox: Grapical user interface 85

2.5.5 Simulating data . . . . . . . . . . . . . . . . . . . . . 86

2.5.6 Example 1: A simple design . . . . . . . . . . . . . . 86

2.5.7 Example 2: A more complicated design . . . . . . . 88

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

2.A Annotated code for generating random data in DMAT . . . 94

2.B Annotated code for fitting two nested diffusion models in

DMAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

2.C Annotated code for generating the data set and estimating

the models described in example 2 . . . . . . . . . . . . . . 98

3 A Bayesian Approach to Diffusion Process Models of Decision-Making 107

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.2 Diffusion models . . . . . . . . . . . . . . . . . . . . . . . . 109

3.2.1 The Wiener diffusion model . . . . . . . . . . . . . . 109



xiv Contents

3.2.2 The Ratcliff diffusion model . . . . . . . . . . . . . . 111

3.3 Application to benchmark data . . . . . . . . . . . . . . . . 112

3.3.1 Data set . . . . . . . . . . . . . . . . . . . . . . . . . 112

3.3.2 Bayesian modeling . . . . . . . . . . . . . . . . . . . 113

3.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . 117

3.4 Sample size . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4 Hierarchical diffusion models for two-choice response times 129

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.2 The diffusion model . . . . . . . . . . . . . . . . . . . . . . 133

4.3 A hierarchical framework for the diffusion model . . . . . . 135

4.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . 135

4.3.2 Uses of the hierarchical diffusion model . . . . . . . 137

4.3.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.3.4 Model building blocks . . . . . . . . . . . . . . . . . 140

4.4 Statistical inference for HDMs . . . . . . . . . . . . . . . . . 145

4.4.1 Motivation for the Bayesian statistical framework . . 146

4.4.2 Computation in the Bayesian framework . . . . . . . 147

4.4.3 Priors . . . . . . . . . . . . . . . . . . . . . . . . . . 148

4.4.4 Graphical models . . . . . . . . . . . . . . . . . . . . 149

4.4.5 Evaluating model performance in the Bayesian fra-

mework . . . . . . . . . . . . . . . . . . . . . . . . . 150

4.5 Application examples . . . . . . . . . . . . . . . . . . . . . . 151

4.5.1 Example 1: Fixed effects and nonlinear regression . 152

4.5.2 Example 2, part 1: Nonlinear regression and random

item-domain effects . . . . . . . . . . . . . . . . . . . 160



Contents xv

4.5.3 Example 2, part 2: Extra explanatory covariates . . 166

4.5.4 Example 3: ANOVA and random person-domain ef-

fects . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

4.6 Software implementation and technical details . . . . . . . . 175

4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

4.A Software implementation of the HDM . . . . . . . . . . . . 183

4.B WinBUGS code for the example applications . . . . . . . . 193

5 A crossed random effects diffusion model for speeded semantic cate-

gorization decisions 215

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

5.1.1 Process models and cognitive psychometrics . . . . . 218

5.1.2 Paper outline . . . . . . . . . . . . . . . . . . . . . . 221

5.2 Data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

5.2.1 Speeded semantic categorization data . . . . . . . . 222

5.2.2 The Leuven data . . . . . . . . . . . . . . . . . . . . 223

5.3 Regression analysis . . . . . . . . . . . . . . . . . . . . . . . 226

5.4 Hierarchical diffusion models . . . . . . . . . . . . . . . . . 228

5.4.1 Diffusion models . . . . . . . . . . . . . . . . . . . . 231

5.4.2 Hierarchical extension . . . . . . . . . . . . . . . . . 233

5.4.3 Bayesian implementation . . . . . . . . . . . . . . . 234

5.5 Analyzing the Leuven data . . . . . . . . . . . . . . . . . . 234

5.5.1 Model assumptions . . . . . . . . . . . . . . . . . . . 234

5.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . 238

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

5.6.1 Implications for semantic categorization studies:

item properties . . . . . . . . . . . . . . . . . . . . . 247



xvi Contents

5.6.2 Implications for semantic categorization studies:

person properties . . . . . . . . . . . . . . . . . . . . 249

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250



Introduction

The central topic in this dissertation is the analysis of reaction time (RT)

data. RT data are omnipresent in psychological research, occurring in

many different subdisciplines (e.g., reasoning, perception, learning, me-

mory...). It is safe to say that RTs are among the most popular experi-

mental measures in psychology. It is unfortunate in that regard that RTs

are, from a statistical point of view, such a strange beast.

The goal of this brief introduction is to provide a layman’s introduction

to the background of our work. In the first section, we will explain why

RTs are exceptional in a statistical sense. In the second section, we will

introduce diffusion models, which are at the heart of our data-analytical

strategy for dealing with two-choice response time (2CRT) data. After

that, we will touch upon the subject of cognitive psychometrics (CP)—

a fairly new1 subdiscipline in cognitive science—and hope to infect the

reader with some of our enthusiasm regarding future directions of CP. In

a final section, we give a bird’s-eye overview of the work presented in this

1And therefore, exciting.

1



2 Introduction

dissertation.

In order to avoid cluttering the main text of this introduction with

many references to the scientific corpus, we have relegated all references

to the Final Considerations section.

The strangeness of reaction times

Formally strange

In the previous section, we remarked that RTs are exceptional in a statis-

tical sense. To explain why this is so, let us look back at the most common

class of statistical models: the linear model (LM). Imagine that two paired

variables, X and Y , have been measured on n occasions, so that (x(i), y(i))

is the ith occasion. The well-known LM can then be used to predict values

of Y (the criterion) on the basis of values of X (the predictor). At the core

of the LM lie three assumptions:

Linearity: This is the most straightforward assumption: there is a

roughly linear relationship between X and Y , so that the predicted

values of Y adhere to the regularity yest

(i) = µ0 + x(i)µ1, µ0, µ1 ∈
R. Of course, typically this prediction will not be perfect, and the

prediction error ε(i) = y(i) − yest

(i) will not be exactly zero for all i.

Normality: The second assumption pertains to the distribution of

the prediction errors ε(i), which is assumed to be normal with mean

zero and some variance σ2
ε : ε(i) ∼ N(0, σ2

ε ).

Homoscedasticity: The third assumption also relates to the distribu-

tion of prediction errors, but simply states that σ2
ε is constant for all

i. That is, it is the same for all conditions, or for all levels of X.
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In the case of RTs, and of speeded RTs in particular, these assumptions

are typically not met. RT distributions tend to be right-skewed, with a

far greater range of high (supramedian) values than of low values, and

‘extreme’ RTs are almost always much larger than the average. ‘Negative’

outliers, on the other hand, are never much smaller than the mean and tend

to have a ‘hard threshold’ (i.e., there is a non-zero lower bound in the RT

distribution). Extreme positive prediction errors are therefore more likely

than extreme negative ones, thereby violating the normality assumption.

As a result, applying a LM like this one to RT data is inappropriate from

a statistical point of view.

A common technique for dealing with the typical right skew of RT

distributions is to take the logarithm of each RT before applying a LM.

While this does alleviate the influence of positive outliers to an extent,

the issue with the non-zero lower bound persists. Even more complex

extensions into the generalized lineal model framework provide no solution

for this lower bound issue. Gamma or exponential regression models, for

example, are restricted to lower bounds that are exactly zero.

The issue becomes even more difficult when the RTs are paired with

choice alternatives or accuracy information. Imagine an experiment with

trials that vary in difficulty. Typically, difficult items will elicit more errors

than easy items, and they will also require more time from the participant.

Since both measures (RT and accuracy) simultaneously depend on this

item difficulty, they cannot be considered independent from one another.

This dependence between measures further complicates the application of

classical statistical models such as multivariate linear models.

In addition to these statistical concerns, there are profound conceptual

and substantive issues with applying LMs to (choice) RT data. We describe

these issues in the next subsection.



4 Introduction

Conceptually strange

In any modeling exercise, the ultimate goal is to extract from empirical

data a handful of numbers (model parameters) that, together with the

functional form of a model, summarize the data in a parsimonious but

comprehensive way. A normal LM focuses chiefly on changes in the mean

of the criterion—but the mean of a distribution of RTs may be influenced

by many (all interesting) factors such as a participant’s ability to make

fast decisions, their level of caution (the so-called speed-accuracy trade-

off), their state of readiness, and the amount of time it takes for them to

process a stimulus and execute a motor response. As a result, observing

a change in mean RT is highly ambiguous to the researcher, as it could

indicate a change in any of these possible determinants (assuming that we

are unaware of participants’ abilities, caution, etc.). Hence, by focusing

almost exclusively on the mean, the normal LM ignores many interesting

aspects of the distribution.2 Gamma or exponential regression models

allow the variance to differ between conditions, but there it is directly

linked to the mean. Ideally, our processing of the data would allow us

to make statements about the psychologically interesting features of the

process by which the data have come about. To accomplish this, we apply

so-called process models.

In the next section, we will introduce one specific type of process

model—the diffusion model—which will be at the center of the rest of

the dissertation.

2Indeed, the author would go so far as to say that it fails to capture any of the
interesting aspects of the data.
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Diffusion models

Meet the family: Sequential sampling models

Constructing and applying a process model begins with enumerating the

basic assumptions that we are willing to make about the process that has

generated the data. For example, in the context of speeded binary choices,

we might be willing to assume that the participant (or the observer or ‘de-

cider’) accumulates small quanta of information, sequentially over time,

from whatever stimulus he or she was exposed to. Suppose that a partici-

pant in an experiment is shown a visual stimulus and is asked to determine

whether the stimulus belongs to category A or category B. Suppose further

that most stimuli are at least somewhat ambiguous concerning category

membership, so that the information they contain may favor A or B in

mixed proportions. The decider then draws samples of information (or

‘evidence’) from this stimulus, one at a time, and aggregates this informa-

tion with the information already accumulated. After each accumulation

step, the decider evaluates whether the total amount of information in fa-

vor of A dominates the amount of information in favor of B, or vice versa.

If so, then the process ends and a response is executed. This is the funda-

mental assumption—the “central dogma”—of sequential sampling models

for choice response times.

The one-dimensional cousins

Within this family of models, there are many subdivisions according to

further, more detailed assumptions one is willing to make. If the ‘evidence

counters’ for A and B are independent, the model is called a race model

(because the two counters race one another to a certain value). In the

case of the diffusion model, evidence for A counts as evidence against
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B, so that there is only one evidence counter. A response is executed if

this counter reaches a certain high value (because that indicates a large

amount of evidence for A) or a certain low value (because this indicates

much evidence against A and hence for B).

Figure 1 shows an example illustration of the information accumula-

tion process during a single trial in an experiment. The observer begins

with an evidence counter at 0.4 (in arbitrary units). The evidence then

accumulated is −0.08, +0.33, −0.05, −0.10, and −0.05, leading to the

following values of the (total) evidence: [0.4 0.32 0.65 0.6 0.5 0.45]. The

double-headed arrow on the left shows the changes in a single counter over

time (with the time points labeled). Subfigure ‘a’ shows the same values

in a more conventional way: with time shown on the horizontal axis. Sub-

figure ‘b’ shows a longer process with similar step sizes—this is a typical

graphical presentation of a one-dimensional random walk : a process in

which a single value changes over time with random steps.

Parameters of a one-dimensional random walk

Figure 2 shows three separate random walks, together with the upper and

lower limits that indicate whether sufficient evidence has gathered in order

to elicit a response. As soon as the process reaches one of these boundaries,

the decision process terminates. The RT of the decider is determined by

the number of steps the process took, and the response depends on which

boundary was hit. If the distance to these boundaries is large, then it will

take more steps to reach a boundary and the system will generally be slow

to generate an output.

The three random walks shown in Figure 2 differ in an important way

that is not clearly visible from the graphical presentation. Their average

step sizes—the amount of information gathered at each time point—are
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Figure 1: An illustration of a random walk in one dimension. A counter changes
value with discrete time steps. The double-headed arrow on the left emphasizes the
unidimensionality: A counter takes a new value at each time point t = 1, t = 2,
and so on. A random walk is more typically depicted as a graph over time, with
time as the horizontal dimension. Subfigure ‘a’ shows the first steps of a random
walk. Longer walks, as in Subfigure ‘b’, become irregular, jagged lines.

positive (0.01), negative (−0.01), or zero. Because of this, one of the

processes has a tendency to drift towards the upper boundary, another

drifts to the lower boundary, and a third has no drift. The first process

will hit the upper boundary with a higher probability, and will also do so

after an expected number of steps that is smaller than the process with no

drift. Similarly, the second process has a higher probability of hitting the

lower boundary, and its average run time will also be shorter than that

of the process without drift. Finally, the third random walk has equal

chances of hitting either boundary, but will on average take more steps to

arrive at any boundary. The average step size of a random walk process is

called its drift rate.

The distance to the boundaries and the drift rate are the main para-
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Figure 2: Three random walks with absorbing boundaries. As soon as a process
hits one of the boundaries, the process ends. In psychological terms, a decision
has been made.

Table 1: The qualitative effects of the boundary separation and drift rate para-
meters of a one-dimensional random walk.

Boundary
separation

Drift rate RT Probability of ‘A’

High Positive Medium Very high (�50%)
High Zero Slow 50%
High Negative Medium Very low (�50%)
Low Positive Fast High (>50%)
Low Zero Medium 50%
Low Negative Fast Low (<50%)

meters of the one-dimensional random walk. Importantly, the effects of

changes in these parameters are distinct. Table 1 gives a quick qualitative

summary of the combined effects of boundary separation and drift rate.

When we apply such a model to data, it makes sense to assume that

the boundary separation is a property of the decider—that is, the system

decides a priori how much information it needs in order to make a response.

Similarly, the rate of information accumulation depends on the quality and
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(lack of) ambiguity of the task or the stimulus. In psychological terms, the

boundary separation is typically considered person-specific, while the drift

rate is stimulus-dependent.

The Wiener diffusion model

The Wiener diffusion model is conceptually very similar to the one-

dimensional random walk described above. In fact, the only conceptual

difference is that for the Wiener process evidence is sampled in continuous

time—so not in discrete steps. This makes no difference for the qualita-

tive interpretation of the parameters—a Wiener process has a boundary

separation and a drift rate just the same. Importantly, the continuous-

time assumption means that we can express the expected distribution of

RTs and choices with a closed-form formula (the likelihood function). We

can use this likelihood function as a template to recover the approximate

parameters of a Wiener process from only the RTs and associated choices.

The diffusion model for two-choice reaction times

While the Wiener diffusion process seems like a plausible model for choice

RTs, we typically extend it with two more parameters in order to make it

more suitable for real data. Firstly, we have so far assumed that the dis-

tance to the two boundaries is identical, making the choice process initially

unbiased. However, we could forgo this assumption and instead allow one

boundary to be closer to the starting point than the other, making the

response associated with that boundary more relatively more likely. The

parameter used to encode this bias is usually called the starting point or the

initial bias—depending on which formal conventions we adopt to express

it.

Secondly, the Wiener process (including the unbiased variety) models
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Table 2: The four main parameters of the Wiener diffusion model, with their
substantive interpretations.

Symbol Parameter Interpretation

α Boundary separation Speed-accuracy trade-off
(high α means high accuracy)

β Initial bias Bias for either response
(β > 0.5 means bias towards response ‘A’)

δ Drift rate Quality of the stimulus
(close to 0 means ambiguous stimulus)

τ Nondecision time Motor response time, encoding time
(high means slow encoding, execution)

a decision process. However, in experimental psychology, the RTs obser-

ved are a sum of more components than just the decision time. Before

a decision is made, stimuli have to be encoded, and after a decision is

made, a response has to be executed. To account for this extra time, we

add a fourth parameter that expresses the encoding and responding time.

With the four parameters defined, the description of the basic model is

now complete. Table 2 lists the four parameters and their psychological

interpretations.

For use in the following section, let us assign symbols to the parameters.

The boundary separation will be α, the initial bias will be β, the drift rate

will be δ, and the encoding and responding time will be τ .

Some nuance

Throughout this dissertation, it will be assumed (unless specifically stated

otherwise) that the process described here is the real process that brings

about each individual response by a participant to a stimulus. While the

substantive conclusions drawn may be robust to some misspecification of

the true process, it is generally advisable to keep in mind the old adage:

“Rubbish in, rubbish out.” This holds true for the application of unsui-

ted (e.g., linear) models to response times, but for the diffusion model as
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well. If, for example, the experimental paradigm allows for self-correcting

processes (i.e., a participant second-guessing a response), then a most ba-

sic assumption of the diffusion model—what we have called the “central

dogma”—is violated and a diffusion model should not be applied.

On the other hand, if all the assumptions of the model seem acceptable,

then the rewards of applying a diffusion model can be great: Rather than

merely observing that some RTs are longer or shorter than others, a well-

applied process model can paint a more detailed, substantively interesting

picture.

Cognitive psychometrics

Psychometrics is the field of psychology that is concerned with measuring

psychological traits such as ability and attitude. Clearly, measuring a

person’s ability to respond accurately in a speeded RT task falls under

that definition. If we adopt the convention that “response A” is the correct

response and “response B” is an error, then we can use the diffusion model

as a psychometric tool.

In psychometrics, however, one typically wants to account for indi-

vidual differences. Suppose that we want to apply a diffusion model to

data collected on a large population. We are interested in the different

items’ i drift rate parameters δ(i) (differences on the item side). In or-

der to achieve a parsimonious model for these data, our model should not

contain superfluous parameters. The different δ(i) are necessary, but the

other parameters (such as the person-specific boundary separations; α(p)

for person p) are not of major interest. However, it is important to al-

low for different boundary separations; we cannot merely assume that all

participants apply the same speed-accuracy trade-off (i.e., that all α(p) are

equal, thereby constraining many parameters).
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An elegant approach that is often applied in psychometrics is to consi-

der the person-specific differences as random effects. By assuming that, for

example, α(p) ∼ N(µα, σ
2
α), the number of parameters to be considered is

reduced.Making this extra distributional assumption (i.e., that the values

α(p) follow a normal distribution in the population) implies that we will

make statements about the larger population from which the parameter

is a member. By including the information that parameters are mem-

bers of the same, somewhat homogeneous population, we allow ‘cross-talk’

between data that would otherwise be considered completely independent.

One case in which this has an obvious effect is when some parameters (that

are members of the same population) are assigned a value that is relatively

extreme. For these measurements, it is slightly more likely that they are

(to some extent) the effect of measurement error. These parameters will be

adjusted towards the mean parameter value to account for this—but the

mean parameter value is of course influenced by all the other parameter

values. In this way, the values of parameters are no longer independent

of one another. The obvious conceptual advantage of this strategy is that

each parameter is informed by a greater amount of data, and is hence less

sensitive to measurement noise.

In the example with the ability parameter, the parameters θ(i) are

draws from the population that is defined by the normal distribution with

mean µα and standard deviation σα. Interestingly, we can quite easily in-

corporate covariate information into this model. Suppose for example that

the experiment was performed with two groups of participants (e.g., young

and elderly). We might not want to assume that these participants’ αs are

draws from the same population, but rather of two distinct populations,

so that

α(p) ∼







N(µα young, σ
2
α young) if p young

N(µα elderly, σ
2
α elderly) if p elderly
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In the above example, we have applied what is called a hierarchical

model, with the diffusion model as its measurement level. This combination

is particularly interesting, because it would allow us to address a very clear

question in a direct manner: Is there a difference in speed-accuracy trade-

off between young and elderly participants? This contrast would show in a

difference in the population parameters (µα young vs. µα elderly and σ2
α young

vs. σ2
α elderly).

The possibility to draw substantive, population-level conclusions is a

direct result of the combination of an interesting cognitive model (like the

diffusion model) with psychometric techniques (like hierarchical models).

The application of this approach to the diffusion model is considered parti-

cularly apposite because this model provides a flexible and well-supported

account of performance in a wide variety of simple decision tasks. Combi-

ning concepts from cognitive psychology with psychometrics is a relatively

recent idea, and has been dubbed cognitive psychometrics.

Final considerations

Publication list

The thesis is a collection of five manuscripts that are either submitted or

already accepted for publication. As a consequence of this formula, there is

some overlap between the chapters. Save for some cosmetic changes, each

chapter is true to the published work and can be read as a self-contained

chapter.

The chapters correspond to the following original publications:

Chapter 1: Vandekerckhove, J. & Tuerlinckx, F. (2007). Fitting the

Ratcliff diffusion model to experimental data. Psychonomic Bulletin

& Review, 14, 1011–1025.
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Chapter 2: Vandekerckhove, J. & Tuerlinckx, F. (2008). Diffusion

model analysis with MATLAB: A DMAT primer. Behavior Research

Methods, 40, 61–72.

Chapter 3: Vandekerckhove, J., Tuerlinckx, F., & Lee, M. D.

(2008). A Bayesian approach to diffusion process models of decision-

making. In B. C. Love, K. McRae, & V. M. Sloutsky (Eds.), Procee-

dings of the 30th Annual Conference of the Cognitive Science Society

(pp. 1429–1434). Austin, TX: Cognitive Science Society.

Chapter 4: Vandekerckhove, J., Tuerlinckx, F., & Lee, M. D.

(2009). Hierarchical diffusion models for two-choice response times.

Submitted.

Chapter 5: Vandekerckhove, J., Verheyen, S., & Tuerlinckx, F.

(2009). A crossed random effects diffusion model for speeded seman-

tic categorization data. Submitted.

The author of this dissertation is also author or coauthor of the following

manuscripts:

Oravecz, Z., Tuerlinckx, F., & Vandekerckhove, J. (in press). A hie-

rarchical Ornstein-Uhlenbeck model for continuous repeated measu-

rement data. Psychometrika.

Panis, S., De Winter, J., Vandekerckhove, J., & Wagemans, J.

(2008). Identification of everyday objects on the basis of fragmented

versions of outlines. Perception, 37, 271-89.

Spruyt, A., Hermans, D., De Houwer, J., Vandekerckhove, J., & Ee-

len, P. (2007). On the predictive validity of indirect attitude mea-

sures: Prediction of consumer choice behavior on the basis of affective
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priming in the picture-picture naming task. Journal of Experimental

Social Psychology, 43, 599-610.

Vandekerckhove, J., Panis, S., & Wagemans, J. (2007). The conca-

vity effect is a compound of local and global effects. Perception &

Psychophysics, 69, 1253-1260.

Vandekerckhove, J., & Tuerlinckx, F. (in press). MATLAB for beha-

vioral scientists: A novice’s guide to MATLAB. Experimental Psy-

chology.

Wetzels, R., Vandekerckhove, J., Tuerlinckx, F., & Wagenmakers,

E.-J. (in press). Bayesian parameter estimation in the Expectancy

Valence model in the Iowa gambling task. Journal of Mathematical

Psychology.

Helpful references

On the topic of linear modeling and the background assumptions of the

linear model, see Ramsey and Shafer (2002). For RT analysis in general,

Luce (1986) is the standard reference work. More in-depth discussion of

sequential sampling models in particular can be found in Bogacz, Brown,

Moehlis, Holmes, and Cohen (2006) and Ratcliff and Smith (2004). On

model fitting in general, Myung (2000) provides an excellent low-threshold

introduction. The application to RT distributions is covered more tho-

roughly by Van Zandt (2000) and Heathcote, Brown, and Mewhort (2000).

The diffusion model for two-choice response times was introduced by

Ratcliff (1978) and specialized fitting strategies for it are discussed in

Ratcliff and Tuerlinckx (2002). An interesting review of recent applica-

tions of the model can be found in Wagenmakers (in press).

The budding field of cognitive psychometrics, finally, boasts very few



16 Introduction

articles in the scientific literature. The term was coined by Batchelder

(1998) and Batchelder and Riefer (1999), and the principle is applied in

many articles by Rouder et al. (e.g., Rouder & Lu, 2005; Rouder et al.,

2007). However, at the time of writing, we are not aware of any articles or

book chapters providing a review cognitive psychometrics.
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CHAPTER 1

Fitting the Ratcliff diffusion model to experimental data

Abstract

Many experiments in psychology yield both reaction time and accuracy

data. However, no off-the-shelf methods yet exist for the statistical analy-

sis of such data. One particularly successful model has been the diffusion

process, but using it is difficult in practice because of numerical, statisti-

cal, and software problems. We present a general method for performing

diffusion model analyses on experimental data. By implementing design

matrices, a wide range of across-condition restrictions can be imposed on

model parameters, in a flexible way. It becomes possible to fit models with

parameters regressed onto predictors. Moreover, data-analytical tools are

discussed that can be used to handle various types of outliers and contami-

nants. We briefly present an easy-to-use software tool that helps perform

diffusion model analyses.

21
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1.1 Introduction

Mental chronometry, the study of psychological processes through obser-

ved response times, is one of the most prevalent approaches in cognitive

psychology. As early as 1868, Donders (1969) used reaction time measure-

ments in order to investigate differences between mental processes. Since

then, reaction time studies have been used in perhaps all fields of cognitive

science. Such is the importance of reaction time data to cognitive psycho-

logy that methods for analyzing them have become an object of study in

their own right (e.g., Luce, 1986).

Continuing this trend, considerable attention has been lent to the com-

bination of reaction time and accuracy data (a ubiquitous combination

often referred to as two-choice response time data). For the analysis of

this type of data, several nonlinear statistical models have been developed,

often with substantive interpretations attached to the parameters and un-

derlying processes (e.g., the discrete random walk model; Laming, 1968;

Link & Heath, 1975). A more advanced model—and the one that is at

the heart of the present article—is the Ratcliff diffusion model (Ratcliff,

1978; Ratcliff, Van Zandt, & McKoon, 1999). The latter model, which will

be described in detail in the next section, has performed remarkably well

in the analysis of two-choice response time data. It has successfully been

applied to experiments in many different fields, such as memory (Ratcliff,

1978, 1988), letter matching (Ratcliff, 1981), lexical decision (Ratcliff, Go-

mez, & McKoon, 2004; Wagenmakers, Ratcliff, Gomez, & McKoon, 2008),

signal detection (Ratcliff & Rouder, 1998; Ratcliff, Thapar, & McKoon,

2001; Ratcliff et al., 1999), visual search (Strayer & Kramer, 1994), and

perceptual judgment (Ratcliff, 2002; Ratcliff & Rouder, 2000; Thapar, Rat-

cliff, & McKoon, 2003; Voss, Rothermund, & Voss, 2004). In particular,

the Ratcliff diffusion model (RDM) succeeds in explaining characteristic
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aspects of two-choice response time data such as the occurrence of both

fast and slow errors. With the RDM, it is possible to make statements

about entire distributions of correct and error latencies, and the parame-

ter estimates allow for inferences that are much more detailed than those

provided by classical models such as ANOVA or curve fitting. In par-

ticular, the RDM’s parameters—which will be described in detail in the

next section—can provide insight into the relative contributions of dif-

ferent factors such as quality of the input stimulus, conservativeness of the

participant, and time spent on processes other than deciding.

In spite of its advantages, the Ratcliff diffusion model has not yet be-

come a popular or widely used method to analyze two-choice response time

data. The reasons for this lack of dispersion have to do with numerical,

statistical, and software issues (see also W. Schwarz, 2001). The first set

of reasons concerns the fact that the model is prohibitively difficult to im-

plement for applied researchers because of numerical difficulties. One has

to deal with an infinite oscillating series in the expression for the cumu-

lative distribution function (CDF) or probability density function (PDF;

see Ratcliff & Tuerlinckx, 2002). In addition, some of the parameters are

allowed to vary from trial to trial and this leads to (partly) intractable

integrals (Ratcliff & Tuerlinckx, 2002; Tuerlinckx, 2004). Recently, Voss

and Voss (2008) have proposed a method to circumvent the problem but

their solution requires a numerical solution of a partial differential equa-

tion. However, once the CDF or PDF have been computed, the task of

estimating the parameters still requires some skill regarding function opti-

mization because no analytical estimators exist. In sum, some experience

with numerical methods is needed to implement the model.

The second group of reasons that have forestalled widespread use of

the RDM is related to statistical issues. The type of data used to apply

the diffusion model is rather complex. On each trial, there is a bivariate
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response, consisting of a reaction time and a choice. The latter is binary

and the former is continuous, but non-normal (positively skewed and with

a lower boundary possibly different from zero). The treatment of such data

is not a trivial issue and traditional statistical methods suited for linear

analysis (e.g., relying on means, computing R2, etc.) fail in this case. In

addition, the reaction time measure is possibly muddied with outliers and

contaminants.

The third category of reasons has to do with the fact that at the time of

this writing, there is no flexible or general software available for diffusion

model analysis. Exceptions are the new program developed by Voss and

Voss (2007) and EZ-diffusion by Wagenmakers, van der Maas, and Gras-

man (2007, see also Appendix 1.B). However, the latter is not able to fit

the full RDM. Up until now, in each of the substantive studies cited above

that made use of the RDM, fitting software was custom-written. However,

researchers often collect data in a design that deviates from designs for

which the previously developed software was written, which impedes the

application of the custom-written software.

It is the goal of the current paper to make diffusion model analysis

more accessible to a general public of researchers by providing numerical

and statistical methods that are useful when fitting the Ratcliff diffusion

model. Also, we provide some demonstration of a MATLAB tool that

implements the methods we present (the Diffusion Model Analysis Toolbox

or DMAT; Vandekerckhove & Tuerlinckx, 2007). For an introduction to

the practical side of working with DMAT, however, we refer the interested

reader to the DMAT primer (Vandekerckhove & Tuerlinckx, 2008).

In what follows, we start with a brief explanation of the RDM. Next,

we outline a design matrix method that permits one to impose substantive

restrictions on the model’s parameters. This flexible technique facilitates

fitting of the RDM and allows for the construction of models that can
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capture a variety of substantive hypotheses. Subsequently, we will discuss

techniques related to the estimation of the parameters of the RDM (i.e.,

the handling of outliers and the construction and minimization of the loss

function). In the following section, we will describe the necessary statis-

tical methods for testing substantive hypotheses and comparing different

models. We then briefly introduce our diffusion model analysis toolbox for

MATLAB. We present results from simulation studies where properties of

these statistical methods are investigated. Finally, we demonstrate the use

of our methods and software in two example applications.

1.2 The Ratcliff diffusion model

1.2.1 Parameters of the model

The diffusion process (see Figure 1.1) has been used to describe and mo-

del the decision component in simple two-choice tasks. In the model, it

is assumed that an observer has a one-dimensional internal representation

of evidence. When the observer is presented with a stimulus, information

regarding it is accumulated sequentially over time until its total amount

reaches the upper or lower bound, resulting in a response (absorbing boun-

daries). The decision time is defined as the time from the start of the

process until the moment one of the absorbing boundaries is reached.

The RDM has seven parameters. The first parameter is the boundary

separation, denoted by a. If a is small, the process is expected to end

sooner but it is more prone to error since random variability inherent

to the decision process may cause it to end up at the wrong boundary.

When a is large, both accuracy and expected reaction time will increase.

The distance between the two absorbing boundaries therefore regulates the

relation between speed and accuracy (the so-called speed-accuracy trade-
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Figure 1.1: An illustration of the Ratcliff diffusion model.

off).

A second property of the model is the starting point of the information

accumulation process, which is denoted as z0 (0 < z0 < a). This parameter

introduces the possibility of response bias in the decision process because

the process is more likely to end at the boundary closer to the starting

point. We will assume z0 to vary from trial to trial (Laming, 1968), ac-

cording to a uniform distribution, with mean z (0 < z < a) and range sz

(0 < sz < min(z, a − z)). These two, z and sz, are the second and third

parameters of the RDM.

Furthermore, the information accumulation process can have a ten-

dency to drift off to one of the two absorbing boundaries, depending on

the quality of the stimulus presented. This information accumulation rate,

or drift rate, is assumed to vary within a trial, following a Gaussian dis-

tribution with mean ξ and standard deviation s, but also across trials

(Ratcliff, 1978), such that ξ follows a Gaussian distribution with mean v

and standard deviation η. An experimental condition with non-ambiguous

stimuli will lead to a large positive mean drift rate v, thus a high probabi-
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lity of hitting the upper boundary (indicating a correct response) in a short

time. The standard deviation s, which indicates the volatility in drift rate

in a single trial, is a non-identified parameter in the model, so we fix it to

the arbitrary value 0.1 (which is a consensus value in the literature, e.g.,

Ratcliff et al., 1999). Thus, we add a fourth and fifth parameter to the

model, namely the mean drift rate v and its intertrial standard deviation

η.

Finally, another component of the model is the time needed to perform

non-decision processes such as encoding of the stimulus, response prepa-

ration and execution of the motor response (Luce, 1986). We denote the

non-decision part of the observed reaction time as ter. This ter is assumed

to vary from trial to trial, according to a uniform distribution with mean

Ter and range st. These two are the sixth and seventh parameters of the

RDM.

1.2.2 Some notational conventions

In the preceding section, we have defined the seven key parameters of the

diffusion model. We will sometimes capture all of these parameters in

a parameter vector θ(c) =
(

a(c), Ter(c), η(c), z(c), sz(c), st(c), v(c)
)

, where the

bracketed subscript (c) refers to the cth condition in an experiment, and

c = 1, . . . , C. When working with different conditions in an experiment

(and thus different parameter vectors), we will vertically concatenate the

parameter vectors into a parameter matrix P. Thus, if we have C condi-

tions, P =















a(1)

...

a(C)

,

Ter(1)
...

Ter(C)

,

η(1)

...

η(C)

,

z(1)
...

z(C)

,

sz(1)
...

sz(C)

,

st(1)
...

st(C)

,

v(1)
...

v(C)















.
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A single column in such a parameter matrix then contains estimates of

one specific parameter over conditions, and such a column vector will be

denoted with a Ψ. For example, the nondecision time in condition c will

be denoted as Ter(c), which is the cth element of ΨTer (the second column

of P), and the second element of θ(c) (the cth row of P).

Finally, we will often use a plain θ to refer to a generic (i.e., any)

parameter.

1.3 The design matrix method

There are several reasons why a researcher might not be interested in fitting

a model with all parameters free. First, there is the issue of parsimony.

Fitting the Ratcliff diffusion model to an experiment with C conditions

would leave us with 7 × C distinct parameters to estimate. Even if the

number of conditions is moderate, for example C = 5, this leads to a large

number of parameters to be estimated (i.c., 35 parameters to be estimated).

Therefore, it seems that some reduction in the number of parameters is

needed from a pragmatic point of view.

Secondly, and more importantly, in many situations one may want to

impose substantive restrictions on the parameters, which will in effect lead

to a reduction in the number of parameters. An obvious example of such

a restriction is the requirement that a certain parameter equals a known

constant. For example, it can be hypothesized that the range of non-

decision time, st, equals zero for all conditions (st(c) = 0 for c = 1, . . . , C).

In this way, st has been dropped from the model (below it will be shown

how it can be evaluated whether this restriction makes sense). Another

popular substantive restriction in the context of the diffusion model is

the requirement of a symmetric diffusion process (z(c) = a(c)/2 for c =

1, . . . , C).
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However, we can go a step further by carrying out a regression of the

parameters onto a set of predictors. To elucidate this concept, assume

that a researcher has set up a brightness discrimination task (RatcliffRou-

der1998; see also Example 2 in this paper). Suppose furthermore that

there are 33 levels of brightness defined by increasing the number of white

pixels in each step with an equal number. For the moment, the focus will

be on the drift rates. Not restricting the drifts in any way will lead to 33

drift parameters to be estimated. However, the researcher may want to

test the hypothesis that the drift rate varies linearly with brightness level:

v(c) = v∗(1) +B(c)v
∗
(2).

where B(c) refers to the brightness level in condition c and c = 1, . . . , C. In

this example, we have reduced the number of parameters to be estimated

from 33 to 2. (Note also that we have introduced a new notation here:

basic or design parameters are marked with a star.)

In general, the drift rate in condition c can be decomposed into a

weighted linear combination of M known predictor values:

v(c) =
M
∑

j=1

d(cj)v
∗
(j) (1.1)

where d(cj) is the value of the jth predictor in condition c. In the afore-

mentioned example, M = 2, d(c1) = 1 and d(c2) = B(c). Because we have C

linear equations as in Equation 1.1 (one for each drift rate), we can make
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use of matrices and vectors to represent them all at once:

Ψv =





















v(1)
...

v(c)
...

v(C)





















=























∑M
j=1 d(1j)v

∗
(j)

...
∑M

j=1 d(cj)v
∗
(j)

...
∑M

j=1 d(Cj)v
∗
(j)























=





















d(11) · · · d(1M)

...
. . .

...

d(c1) d(cj) d(cM)

...
. . .

...

d(C1) · · · d(CM)





















×























v∗(1)
...

v∗(j)
...

v∗(M)























= Dv×v∗.

The design matrix D is a C×M matrix where each column represents

a predictor (e.g., an intercept, an experimental treatment, a measured

variable, etc.). The design matrix D is then multiplied with an M × 1

design parameter vector, to recover a C × 1 model parameter vector Ψ.

The idea of regressing the parameters onto a set of predictors can be

applied to all parameters in the model and is by no means restricted to

the drift rates. Because a different design matrix can be used for each

parameter, D is indexed with the parameter symbol in order to make it

clear to which parameter the design corresponds. The entire parameter

matrix P can be described in terms of only the seven (known) design

matrices D and the seven design parameter vectors Ψ. The result is that,

when fitting the model to the data, only the elements of the parameter

vectors (as opposed to all the diffusion parameters) have to be estimated.

Two special and interesting cases of design matrices D are worth men-
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tioning. The first special case is where D consists of a column of ones.

This can be illustrated for the parameter Ter as follows:





















Ter(1)
...

Ter(c)
...

Ter(C)





















=





















1
...

1
...

1





















×Ter∗(1).

The result of this is that the C conditions have the same Ter. In a second

special case, D equals the C × C identity matrix such that each of the C

conditions has a different value for a certain parameter. In the case of an

identity matrix as the design matrix, there is no restriction of parameters

across conditions.

To illustrate the usefulness of the design matrix method, let us consider

a final example. Suppose we want to fit a drift rate to the first condition

and allow the drift rates of the other conditions to deviate from the first

condition (but all in the same way). This can be implemented by defining

the design matrix

Dv =















1 0

1 1
...

...

1 1















with Ψv = Dv×





v∗(1)

v∗(2)



, and therefore v(1) = v∗(1) and v(2) = v∗(1) + v∗(2)

for all c 6= 1 (see Chapter 6 in Littell, Stroup, & Freund, 2002, for more

details on the construction of design matrices).
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In general, we formulate the parameter matrix P =

{Da×a∗,DTer ×Ter
∗,Dη×η∗,Dz×z∗,Dsz×sz

∗,Dst×st
∗,Dv×v∗} .

Then, all the elements of a∗, Ter
∗, η∗, z∗, sz

∗, st
∗, and v∗ are the para-

meters over which we want to optimize the fit to data.

Creative use of design matrices allows one to impose substantive res-

trictions on parameter sets, and will enable researchers to test specific

substantive hypotheses. Extending the diffusion model with the design

matrix methodology, it becomes possible to build a type of “analysis of

variance/multiple regression”-diffusion model.

Using the design matrix method entails two restrictions, however.

Firstly, only linear decompositions (i.e., linear in the basic parameters)

can be represented by matrices. Secondly, only restrictions across condi-

tions are possible, while restrictions across parameters (e.g., restricting z

to be equal to a/2) requires a different strategy. Nonetheless, implemen-

ting restrictions using design matrices is a very flexible and powerful tool

which has gained some attention as well in other areas (e.g., see De Boeck

& Wilson, 2004, for a wide variety of applications in psychometrics).

1.4 Statistical inference: Estimation

Finding the parameters of the Ratcliff diffusion model, given a data set, is

something of a challenge. Before starting, several nontrivial choices need

to be made, in particular regarding how to deal with outliers and other

contaminant reaction times, the objective function to use in the estimation

step, and the precise method of optimization of the latter function. In this

section, we discuss each of these choices, but for details we will refer the

reader to Appendices 1.A and 1.B. A crucial part of any algorithm to fit the
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diffusion model is the efficient computation of its cumulative distribution

function (CDF). For this, we rely heavily on the methods described in

Tuerlinckx (2004).

1.4.1 Outlier handling strategies

An important issue to consider when applying a statistical model to reac-

tion time data is that of contaminants—data points that appear in the

data sets but that are somehow not germane to the research question. A

well-known class of contaminants is outliers (data points that are outside

the range of normal observations), but other examples are random guesses

(data from trials where the participant somehow missed the stimulus and

guessed), delayed start-ups (where the participant was somehow inappro-

priately delayed in responding), and fast guesses (where the participant

executed a response before having actually inspected the stimulus).

Each of these types of contaminants can severely muddy the data

(Ratcliff, 1993; Ratcliff & Tuerlinckx, 2002; Ulrich & Miller, 1994), possi-

bly resulting in biased parameter estimates and incorrect standard errors

of estimation. A fitting procedure for a reaction time model such as the one

considered in this paper should therefore always be equipped with a proper

strategy for handling these contaminants. We opt for a combination of two

methods: First, the data are preprocessed with an exponentially weighted

moving average (EWMA) control method that gives the minimal reaction

time necessary for inclusion in the data analysis and second, a mixture

model is fitted to the data.

The EWMA method is an optional new method that is used in a pre-

processing step in order to filter out reaction times that are suspected of

being fast guesses. The idea behind this method is that the identification

of fast guesses is made possible because they tend to have a specific signa-
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ture, being responses with a very short RT and chance level performance.

A method suggested by this property of fast guesses sorts the data points

according to the response times and finds the minimal response time at

which the responses begin to deviate from what we expect when guessing.

This minimal response time is used as a lower cut-off value such that all ob-

servations with shorter RTs are censored. More technical detail is provided

in Appendix 1.A.

The mixture model approach to handle outliers was first described in

Ratcliff and Tuerlinckx (2002) but it is extended here to cope with a larger

variety of contaminants. The basic idea is that each trial has a probability

of (1−π)γ of being a guess, a probability of (1−π)(1−γ) of being a ‘delayed

startup’, and a remaining probability π of being an actual realization of

a diffusion process (note that this model reduces to the original RDM if

π is 1). Each trial can then be represented by the decision tree shown

in Figure 1.2. The first step leads to either the diffusion process (with

probability π) or to a contamination process (with probability 1 − π).

A contamination process can in turn be a ‘guess’ (with probability γ)

or a ‘delayed startup’ response (with probability 1 − γ). Note that this

treatment adds two free parameters to the model (π and γ), yielding an

extended RDM. Details concerning the component distributions and the

mixture distribution are provided in Appendix 1.A.

1.4.2 The loss function

To estimate the best fitting parameters of the RDM (or the extended

RDM), given a data set, we have to find the maximum of a likelihood

function, or the minimum of some deviance function. For our loss func-

tion, we use a negative multinomial log-likelihood function (MLF), but

other options are available in the program (see below, The Diffusion Mo-
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π (1−π)

γ (1−γ)

Random
guess

Delayed
startup

ContaminantDiffusion

Figure 1.2: A decision tree structure illustrating the mixture model.

del Analysis Toolbox). We opt for the MLF for several reasons, chiefly

among them its computational tractability compared to continuous like-

lihood and its robustness in the face of a small amount of contaminants

and outliers (see Ratcliff & Tuerlinckx, 2002). Briefly, the loss function

is defined as −2 times the natural logarithm of the joint likelihood of ob-

serving the observed number of data points in each of a set of predefined

“reaction time bins”. We call this statistic Λ. Details regarding Λ and its

optimization are provided in Appendix 1.B.

1.5 Statistical inference: Testing and model selection

After having estimated the parameters of one or more models, the resear-

cher may want to test hypotheses about the parameters and/or compare

models. We distinguish between testing a hypothesis about a single para-

meter with the Wald test, comparing two nested models, and comparing

non-nested models.
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1.5.1 The Wald test for a hypothesis about single parameter

The univariate Wald test can be used to test the null hypothesis that

θ = θ0 (versus the alternative θ 6= θ0). It starts from the Wald statistic

Z = θ̂−θ0
s
θ̂

, where θ̂ is the point estimate of some parameter θ and sθ̂

the standard error. Under the null hypothesis and under some regularity

conditions, Z follows approximately a standard normal distribution (or,

equivalently, Z2 follows a χ2
1-distribution; Bishop, Fienberg, & Holland,

1975; the univariate Wald test is equivalent to a “Z-test”).

Although the regularity conditions are fairly general, one of them is

noteworthy. The Wald statistic should not be used if the test value θ0 is

at a boundary of the parameter space (Bishop et al., 1975, but see also

Stram & Lee, 1994, for an adaptation of the reference distribution). As a

consequence, it cannot be used to test the null hypothesis that, for example

η = 0, since η is bounded at 0.

Note also that a multivariate Wald test is possible to test a composite

null hypothesis about several parameters (Bishop et al., 1975).

1.5.2 Comparing two nested models

A model, called the reduced model, is nested in another model, called the

full model, if the reduced model can be reached by setting restrictions

on the parameters of the full one (e.g., setting some of the parameters

to zero). Such nested models can be compared through the likelihood

ratio test (LRT). In this way, joint hypotheses about several parameters

simultaneously can be tested. The LRT is very helpful in combination with

the design matrix approach because Model 1 is nested in Model 2 if for a

given parameter the columns of the design matrix of Model 1 (D1) lie in

the space spanned by the columns of the design matrix of Model 2 (D2)

(where we assume that the design matrices for the other parameters are
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kept constant). That is, the models are nested if each column of D1 can

be represented as a linear combination of the columns of D2.

For example, a researcher might want to test whether an experimental

manipulation has had some influence on drift rate. To that end, one could

compare a model in which all drift rates are constrained to be equal to a

model where they are free to vary over conditions. The former model—the

reduced model—could be formulated as

Preduced =

{1C×a∗,1C×Ter
∗,1C×η∗,1C×z∗,1C×sz

∗,1C×st
∗,1C×v∗} ,

where 1C indicates a C × 1 vector with all elements equal to 1 (C being

the number of conditions in the experiment). This model restricts all

parameters to be equal across conditions, while the latter model—the full

model—is then:

Pfull =

{1C×a∗,1C×Ter
∗,1C×η∗,1C×z∗,1C×sz

∗,1C×st
∗, IC×C×v∗} ,

where the drift rates are now determined by the multiplication of the C×C
identity matrix IC×C and the design parameter matrix v∗. Thus, the

restriction on drift rate v is now released and C − 1 parameters have been

added to the model (because v∗ now contains C elements instead of 1).

Note that the columns of the drift design matrix in the reduced model lie

in the column space of the design matrix of the full model.

The LRT statistic ∆Λ is the difference between the negative of twice

the log-likelihood of the reduced model and the negative of twice the log-

likelihood of the full model: ∆Λ = ΛPreduced
− ΛPfull

. Under the null

hypothesis (i.e., that the reduced model is true), ∆Λ follows approximately
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a chi-square distribution with number of degrees of freedom equal to the

difference in number of parameters between the full model and the reduced

model: ∆Λ = ΛPreduced
− ΛPfull

∼ χ2
∆df . In the case of the example given

in the previous paragraph, ∆df = C − 1.

Two things should be noted about the LRT. First, the same boundary

condition applies here as for the Wald statistic: if the reduced model para-

meter set Preduced is at an edge of the parameter space of the full model,

this statistic should not be used. Second, the distribution of ∆Λ assumes

that fixed reaction time bins were used (see Appendix 1.B). In the case

where percentile-based bins were used, the chi-square assumption does not

hold (see Speckman & Rouder, 2004; see also Appendix 1.B).

1.5.3 Comparing non-nested models

If two models are not nested, then model selection may be carried out

by using information criteria such as the Akaike Information Criterion (in

this paper we use the small sample version AICc; Hurvich & Tsai, 1989)

or the Bayesian Information Criterion (BIC; G. Schwarz, 1978). The

two measures are defined as AICc = Λ + 2dN/(N − d − 1) and BIC =

Λ + dlog(N), where N is the total number of observations and d indicates

the number of free parameters in the model in question. In both cases, the

model with the lower value on the criterion is preferred. Of course, these

criteria can equally validly be applied to nested models.

1.6 The Diffusion Model Analysis Toolbox

In an attempt to further popularize the diffusion model, we have develo-

ped a MATLAB (version 2006a; c©1994 The MathWorks, Inc.) applica-

tion, which should allow researchers with less technical background to use

the diffusion model in practice. The program, which is called DMAT (for
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Diffusion Model Analysis Toolbox) can be freely downloaded from the web-

site of the K.U.Leuven Research Group for Quantitative and Personality

Psychology (http://ppw.kuleuven.be/okp/dmatoolbox ).

In creating DMAT, we had two main goals in mind. The program

should be (1) accurate and efficient and (2) user-friendly. We believe that

we have achieved both goals to a satisfactory degree. Regarding accuracy

and efficiency, DMAT performs well in simulations (see below) testing the

recovery of model and design parameters from simulated data (estimation

biases are generally low and standard errors small). In addition, on our

desktop PCs, the algorithm typically converges in less than one minute’s

time. The program is developed to make use of all fitting and modeling

strategies we have discussed above (and more).

Regarding flexibility and ease of use, we have added a graphical user

interface (GUI). (Note that a MATLAB command interface is also available

and offers more flexibility.) Also, wherever we could, we have provided

default settings that we believe will perform well in most cases, and we have

written an instructional primer to the use of the toolbox (Vandekerckhove

& Tuerlinckx, 2008).

1.7 Simulations

To evaluate aspects of the tools described above, we performed many

Monte Carlo simulations, of which we report here a selection. We dis-

cuss the results of three simulation studies in which the performance of

the estimation method is tested and two more simulations are carried out

to evaluate properties of the inferential statistics associated with using the

RDM.

Throughout, we use six standard parameter sets (A through F), which

are reported in Table 1.1. Note that in each of these parameter sets, there
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Table 1.1: Standard parameter sets used in the simulations. See text for details.

Parameter Set

A B C D E F
a 0.08 0.08 0.16 0.16 0.16 0.16
Ter 0.30 0.30 0.30 0.30 0.30 0.30
η 0.08 0.16 0.08 0.16 0.08 0.16
z 0.04 0.04 0.08 0.08 0.08 0.08
sz 0.02 0.02 0.02 0.02 0.10 0.10
st 0.02 0.02 0.02 0.02 0.10 0.10
v1 0.40 0.40 0.30 0.30 0.30 0.30
v2 0.25 0.25 0.20 0.20 0.20 0.20
v3 0.10 0.10 0.10 0.10 0.10 0.10
v4 0.00 0.00 0.00 0.00 0.00 0.00

are four conditions, across which all parameters are identical, except for

drift rate, which systematically varies (in Table 1.1, there are ten columns

with parameters: six with the parameters that are constant across condi-

tions, and one for each condition’s drift rate). We borrow these parameter

sets from Ratcliff and Tuerlinckx (2002). Our simulation method was ba-

sed on the rejection method described in Tuerlinckx, Maris, Ratcliff, and

De Boeck (2001).

1.7.1 Asymptotic parameter recovery

As a first test of the estimation algorithm, we used it to estimate RDM

parameters, given the true (i.e., expected) proportions in each of the bins

of the likelihood function (see Equation 1.5 in Appendix 1.B). In other

words, as input we use the exact proportions of observations that each

reaction time bin would have, given a certain set of parameters. Under

this condition, there should be perfect recovery of the parameter values.

This test was carried out under many different parameter sets, including

the ones in Table 1.1. In each case, the algorithm returned the exact



1.7 Simulations 41

parameter values to the requested accuracy (this was the case for each

objective function DMAT allows).

1.7.2 Preasymptotic parameter recovery

As a second test of the estimation algorithm, we performed a series of

simple simulations to investigate biases and standard errors of the parame-

ter estimates. We define the relative bias of each parameter as
¯̂
θ−θ
θ ×100%,

and the standard error as

√

1
R−1

∑R
j=1

(

θ̂j − ¯̂
θ
)2

, with R the number of

replications, and θ̂ and
¯̂
θ respectively the estimate and the mean estimate

of the parameter θ.

From each of the six parameter sets shown in Table 1.1, we generated

100 data sets with 250 data points in each condition (without outliers). We

used DMAT to find parameter estimates and calculated relative biases and

standard errors within each parameter set. As can be seen from Table 1.2,

the simulation parameters are generally well recovered. The a, Ter, and z

estimates tend to be within 10% of their simulation values. The relative

biases of the v estimates are slightly larger for large values of the “true” v.

As already seen in Ratcliff and Tuerlinckx (2002), the variance parameters

tend to be slightly more difficult to estimate, in particular when they are

small compared to the means of the distributions.

We repeated this simulation for three different sample sizes: instead

of having 250 observations per condition, we used simulated data sets

with 100, 500, and 2500 observations per condition. In Table 1.3 we show

relative biases and standard errors for each sample size. To conserve space,

we report average (absolute) values over the six standard parameter sets.

As can be seen in Table 1.3, biases and standard errors are somewhat

higher for the N = 100 condition, especially those regarding the starting

point range and larger drift rates. As expected, biases decrease strongly
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Table 1.2: Recovery of simulation parameters by DMAT. Relative biases are in
the upper half, standard errors (multiplied by 1000) in the lower half.

Parameter
Set

a Ter η z sz st v1 v2 v3 v†4

A 2 1 1 3 7 -38 11 4 5 -2
B 2 1 8 2 6 -49 8 5 5 -1
C 3 4 2 5 91 -3 14 7 5 -3
D 7 4 23 7 127 1 21 17 18 0
E 3 -1 1 3 -1 -1 11 5 4 -0
F 4 0 9 4 -1 2 10 7 8 -1

A 4 7 72 2 21 13 78 44 28 23
B 4 7 65 2 22 13 64 46 31 25
C 14 18 48 7 43 33 70 45 26 13
D 26 21 92 13 58 31 128 77 46 20
E 13 24 47 7 35 36 64 44 25 13
F 25 27 89 13 56 32 113 71 42 20

† Biases for v4 are not relative biases, but the actual recovered values multiplied by
1000 (since the true values were zero)

as N increases, and standard errors decrease with a factor
√

5 (i.e., the

standard errors are roughly proportional to the square root of the sample

size).

1.7.3 Outlier handling strategies

To test the outlier treatment procedure applied by our algorithm (see Ap-

pendix 1.A), we performed four more simple simulation runs to evaluate

the combined EWMA / mixture model approach. In each simulation run,

we again generated 100 data sets from each of the six parameter sets shown

in Table 1.1, with 250 data points in each condition.

We employed a simple two-by-two design: we either added outliers to

the simulated data or did not, and we either enabled the outlier treatment

or did not. When we did add outliers, 2.5% were fast guesses (RTs were

draws from a uniform distribution between 200 and 400ms and accuracy
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Table 1.3: Recovery of simulation parameters by DMAT, when the number of
observations in each of four conditions is varied over three levels (100, 500, and
2500). The simulation was run with each of the six standard parameter sets, but
the results are averaged here (for the relative biases, we averaged over absolute
values). Relative biases are in the upper half, standard errors (multiplied by 1000)
in the lower half.

Sample
size (N)

a Ter η z sz st v1 v2 v3 v†4

100 4 2 12 6 49 5 23 15 4 4
500 1 1 4 1 11 20 4 3 2 1
2500 1 0 3 1 12 12 2 2 2 1

100 18 24 89 10 48 42 126 86 45 31
500 6 11 38 3 25 18 41 29 19 13
2500 3 5 16 1 13 9 17 12 8 6

† Biases for v4 are not relative biases, but the actual recovered values multiplied by
1000 (since the true values were zero)

was about 50%) and an additional 2.5% were delayed startups (RT draws

from a uniform distribution between 500 and 3000ms, but with accuracy as

expected under the diffusion model). We then estimated the parameters for

each data set with DMAT and compared parameter recovery. In Table 1.4,

the results are shown for parameter set A. As can be seen, if the data set

did contain outliers with the aforementioned properties, and they are not

accounted for, estimation biases increase dramatically, to over 100% for

some drift values. When the combined EWMA / mixture model method

is applied, relative biases return to the same magnitude as in the condition

where no outliers existed.

To conserve space, we do not report results for the other parameter

sets here, but as it turns out, our outlier treatment succeeds in alleviating

the influence of outliers and contaminants on parameter estimates: biases

and standard errors of the parameters that the adapted algorithm returned

from the contaminated data set are closer to those of the parameters that

the original algorithm returns from a “clean” data set, and they are lower
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Table 1.4: DMAT’s recovery of simulation parameters from either “clean” or
outlier-contaminated data (generated from parameter set A in Table 1.1), with
our outlier correction method either enabled or disabled. Relative biases are in
the left half, standard errors (multiplied by 1000) in the right half.

Relative bias Standard errors

Outliers added: No Yes No Yes No Yes No Yes
Outliers treated: No No Yes Yes No No Yes Yes

a 2 62 -5 0 4 6 4 3
Ter 1 3 3 2 7 8 8 8
η 4 513 -60 -14 64 24 46 63
z 3 55 -3 1 2 4 2 2
sz 25 471 12 44 21 18 18 20
st -40 191 14 -3 13 11 16 23
v1 10 112 15 6 71 49 72 60
v2 4 110 3 2 40 116 32 37
v3 4 166 0 0 23 35 18 25

v†4 0 0 0 0 21 47 16 16
π .96 .94 29 6
γ .22 .05 347 90

† Bias values for this parameter are actual recovered values, not relative biases.

than those from the original algorithm on the contaminated data set.

It should be noted, however, that other processes than the ones assu-

med here might generate contaminant reaction times. If that is the case,

then parameter estimates might still be biased, in spite of the correction

mechanisms proposed in this paper.

1.7.4 Power analyses

1.7.4.1 Power analysis 1

In another series of simulations, we evaluated the power of the likelihood

ratio test. From each of the six parameter sets shown in Table 1.1, we

again generated 100 data sets with 250 data points in each condition.

Then we allowed DMAT to find the best parameter estimates, imposing
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two different models. In the first model, we allowed for no parameter

changes across conditions:

P1={1C×a∗,1C×Ter
∗,1C×η∗,1C×z∗,1C×sz

∗,1C×st
∗,1C×v∗} .

In the second model, we allowed drift rates to vary across conditions:

P2 ={1C×a∗,1C×Ter
∗,1C×η∗,1C×z∗,1C×sz

∗,1C×st
∗, IC×C×v∗} .

It can be seen that the first model is nested in the second. Therefore, the

first is the reduced model and the second the full model.

Then, we computed the test statistic ∆Λ = ΛP1
− ΛP2

∼ χ2
df=3 and

its significance level. If the likelihood ratio test has sufficient power, a

large proportion of these statistics should be larger than the critical chi-

square value. Failing to reject a null hypothesis that is truly false, on the

other hand, would be a Type II error. In fact, as it turns out, in 99% of

these cases did a significant result emerge at all significance levels (down

to α = 10−6). In only four cases (once in parameter set B and thrice in

C) was the null hypothesis not rejected at the α = .01 level. It can be

concluded that, at least for these parameter sets and this sample size, the

likelihood ratio test has very high power.

1.7.4.2 Type I error

However, the previous result begs the question of selectivity: Is it possible

that the analysis would yield significant results, even where none were

present? To test this possibility, we repeated the same kind of simulations,

but now we changed the true parameters such that all drift rates remained

constant across conditions. The drift rates were all equal to -.25, -.15, -.05,

.05, .15, and .25 for parameter sets A through F, respectively. If the likeli-
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hood ratio test statistic follows a chi-square distribution, we would expect

the p-values resulting from this test to follow a uniform distribution under

the null hypothesis. Figure 1.3 shows the empirical cumulative distribution

functions of p-values for each of the six parameter sets together with the

straight line which is the theoretical CDF of a uniform random variable.

The empirical distribution of p-values deviates from the theoretical but not

much. The deviation indicates that the likelihood ratio test is slightly too

liberal, and that it may be prudent to test at more restrictive significance

levels in practical settings.

1.7.4.3 Power analysis 2

Following up on the previous simulations, we set up a new series to de-

termine how well DMAT is able to detect small differences in parameters.

To that end, we simulated data sets with 250 data points in each of two

conditions. In both conditions, all parameters were equal (and taken from

parameter set A in Table 1.1), except for drift rate. Drift rate was always

zero in the first condition, and in the second condition it was either also 0,

or .02, .04, .06, .08, or .10. With each of those values for the second drift

rate, we generated 10000 data sets and allowed DMAT to recover the para-

meter estimates, once with a model allowing no differences across the two

conditions and once allowing drift rate to differ between the conditions.

Then we calculated the likelihood ratio test statistic and the associated

p-values (found from a χ2-distribution with one degree of freedom). Fi-

gure 1.4 shows the proportion of rejected null hypotheses as a function of

the threshold value α. There it can be seen that if the true drift rate in

the second condition is 0.1, there are a lot of rejections of H0, even with

very small values for α. Table 1.5 shows the proportion of rejections of H0

for common values of α. When α = .05, a drift rate of 0.1 is detected more
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Figure 1.3: The selectivity of the DMAT algorithm is illustrated. Different lines
indicate different parameter sets. The full black line on the diagonal is the expected
cumulative distribution function of the p-values (a uniform CDF). Lines above the
diagonal indicate a liberal decision, while lines under it indicate a conservative
decision. In general, DMAT produces CDFs that are close to the uniform CDF.

than 96.3% of the time, but at a 6.1% risk of getting a “false alarm”. With

α = 10−6, there are no false alarms, but the test is much less powerful,

detecting a drift rate difference of 0.1 in only 18.5% of cases.

1.8 Applications

To demonstrate the application of the methods described in this paper, we

use two data sets containing both accuracy and reaction time data (Expe-
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Figure 1.4: The sensitivity of DMAT is illustrated. Different lines indicate data
sets with larger or smaller simulated differences in drift rate. As the simulated
difference increases, the CDF of the p-value departs from that of the uniform.

Table 1.5: Proportion of rejected null hypotheses for different levels of the α
criterion, and with different ‘real’ effects in the data. Real differences in drift rate
of 0.1 are detected in 96.28% of cases at the .05 significance level, but at that
α-level there are also 6.07% false alarms.

Simulated difference in drift rate

α 0 0.02 0.04 0.06 0.08 0.1

.05 .0607 .1454 .3778 .6649 .8769 .9628

.01 .0151 .0503 .1848 .4452 .7297 .9062

.0001 .0002 .0023 .0153 .0819 .2586 .5388

.00001 .0000 .0009 .0044 .0285 .1244 .3360

.000001 .0000 .0005 .0007 .0091 .0536 .1848
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riment 3 in Vandekerckhove, Panis, & Wagemans, 2007, and Experiment 1

from Ratcliff & Rouder, 1998; used with permission). For substantive de-

tails on the studies, the interested reader is referred to Vandekerckhove et

al. (2007) and Ratcliff and Rouder (1998).

1.8.1 Example 1: An incomplete factorial ANOVA design

The experiment by Vandekerckhove et al. (2007) is in the domain of visual

shape perception and change detection in particular. The basic effect of

interest is that if observers are shown a succession of two 2D shapes which

are different in only one vertex (an angle or a curvature extreme), this

difference is easier to detect if it is adding or removing a concavity than

if it is adding or removing a convexity (Barenholtz, Cohen, Feldman, &

Singh, 2003). The substantive research question in this experiment is:

Does the effect occur when the change is not adding or removing a new

vertex, but increasing or decreasing an existing one? The paradigm is a

two-interval forced choice task.

In the experiment, three variables are manipulated: (a) change: was

there any difference between the two shapes? (b) quality: did the number

of vertices change? (c) type: if there was a change, was it in a conca-

vity (curvature with negative sign) or in a convexity (positive sign)? As

is obvious from variables (b) and (c), this is not a fully crossed design

(properties of the change cannot be manipulated if there was none; as a

result each ‘change’ condition had 80 data points, but each ‘no-change’

condition had 320). Table 1.6 lists all the conditions between which we

would want to differentiate. Because the manipulations are all intended to

affect the quality of the stimulus, we expect changes in drift rate, but not

in any other variable. Writing the design as we do in Table 1.6 simplifies

construction of a design matrix: The complete design matrix is simply the
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Table 1.6: Design of Experiment 3 in Vandekerckhove et al. (2007).

Condition Change Quality Type

1 1 1 -1
2 1 1 1
3 1 -1 -1
4 1 -1 1
5 -1 0 0

last three columns in the table, plus one column with ones for an intercept.

The goal of this experiment (and thus of the data-analysis) is twofold.

Primarily, it was to find out whether the type variable contributes anything

above and beyond the quality variable. Additionally, if type has an effect,

we would want to know whether it is independent of quality (i.e., is there

an interaction?). To this end, we defined a series of five models, each an

extended version of the former. In Model 1, all parameters were constant

across conditions:

P1 = {15×a∗,15×Ter
∗,15×η∗,15×z∗,15×sz

∗,15×st
∗,15×v∗} .

In Model 2, we let drift rates vary according to the design of the expe-

riment, without the type variable, and in Model 3, we let drift rates vary

according to the complete design of the experiment. These design matrices

were

Dv2 =





















1 1 1

1 1 1

1 1 −1

1 1 −1

1 −1 0




















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Table 1.7: Fit statistics from the model queue for one participant (Example 1).

Model Λ df ∆Λ ∆df p AICc BIC

1 2414.32 9 2433 2472
2 2401.95 11 12.37 2 .0021 2424 2472
3 2387.49 12 14.46 1 .0001 2412 2464
4 2387.13 13 0.37 1 .5435 2414 2470
5 2373.70 37 13.42 24 .9587 2453 2609

and

Dv3 =





















1 1 1 −1

1 1 1 1

1 1 −1 −1

1 1 −1 1

1 −1 0 0





















,

respectively. In Model 4, we allowed drift rates to vary freely across condi-

tions:

Dv4 = IC×C,

and finally, in Model 5, we allowed all diffusion parameters to vary freely

across all five conditions:

P5 = {I5×a∗, I5×Ter
∗, I5×η∗, I5×z∗, I5×sz

∗, I5×st
∗, I5×v∗} .

Note that Model 1 has 9 free parameters, Model 2 has 11, Model 3

has 12, and Model 4 has 13, while Model 5 has 37 (we keep the mixture

model parameters π and γ constant in all models). Note also that each

model is nested in the next. We report the analysis for one participant in

the experiment. Table 1.7 displays the fit statistics of each model together

with the deviance Λ and the likelihood ratio test statistic ∆Λ for two

consecutive models (together with the appropriate number of degrees of

freedom).
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From the table, we can conclude that the increase in model freedom

from Model 1 to Model 2 was a success—the badness-of-fit measure signifi-

cantly decreases (p = .0021). Going from Model 2 to Model 3 (adding the

variable type) also significantly improved model fit (p = .0001). However,

going to Model 4 (allowing deviation from the experimental design) was not

a worthwhile step: allowing drift rates to vary freely does not significantly

improve the fit of the model (p = .5435). Finally, while the step from Mo-

del 4 to Model 5 decreased the chi-square value, this decrease was again not

significant when we take into consideration that 24 parameters had been

added to the model (p = .9587). Considering this, and inspecting theAICc

and BIC values, Model 3 earns our preference. Furthermore, the estimated

basic drift parameters were v̂∗ =
[

0.065 −0.039 −0.050 −0.077
]T

.

The standard errors of these basic parameters, obtained from inverting the

Hessian matrix, are 0.012, 0.010, 0.014, and 0.015, respectively. Thus, the

Wald test for H0 : v4 = 0 (the effect of type) is Z = v̂4−0
σv4

= −0.077
0.015 = −5.10,

p < 10−6. The values of the other parameter estimates and their standard

errors of estimation under Model 3 are given in Table 1.8. In the table, it

can be seen that ŝz
∗ has converged to a boundary value (zero), so we might

consider removing it from the model in a second stage of the data-analysis

(but doing so does not dramatically affect the other parameter estimates).

Regarding outlier treatment, the parameter π converged to a boundary

value (one) as well, meaning that there appear to be very few contaminants

in this data set. As a result, the γ parameter becomes unidentified and we

might later also consider dropping both π and γ from the model. (When we

did this, the outcome of the analysis still remained the same.) The cut-off

value estimated by the EWMA method was 373.3 ms, meaning that about

9% of data points (in this case, evenly distributed across conditions) were

censored.

As for the substantive hypotheses, the finding that adding the type
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Table 1.8: Recovered basic parameters and associated standard errors (SEs) for
Example 1, under Model 3, for one participant. Wald tests are for H0: θ = 0.

Parameter Estimate SE Z p

a∗(1) 0.1747 0.0105 16.63 <.0001†

Ter
∗
(1) 0.3406 0.0054 62.74 <.0001†

η∗(1) 0.2542 0.0346 7.36 <.0001†

z∗(1) 0.0888 0.0053 46.88 <.0001†

sz
∗
(1) 0.0807 0.0535 1.50 .0607†

st
∗
(1) 0.0000 0.0318 0.00 .5000†

v∗(1) 0.0649 0.0117 5.56 <.0001

v∗(2) -0.0385 0.0104 -3.71 .0002

v∗(3) -0.0501 0.0135 -3.72 .0002

v∗(4) -0.0769 0.0151 -5.10 <.0001
† Using Stram and Lee’s (1994) corrected reference distribution Z2 ∼ .5χ2

0 + .5χ2
1.

variable to the analysis significantly increased model fitness indicates that

it influences drift rate, above and beyond the effect of the quality variable.

Additionally, allowing for a more complex pattern than the experimental

design (e.g., with interactions) did not lead to a better fit, indicating that

for this participant, the experimental variables did not interact.

The reported results were not identical for all participants in the ex-

periment. Five out of ten showed the pattern discussed above. In two

other cases, Model 3 did not provide a significantly better fit than Mo-

del 2, indicating no significant effect of type. In a further two cases, Mo-

del 4 did provide a significant improvement relative to Model 3, indicating

interactions between experimental variables. In one final case, Model 4

performed better than Model 3, but Model 5 also performed better than

Model 4, indicating influences on other parameters beside drift rate (with

this participant, there was a large across-condition difference in boundary

separation).
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1.8.2 Example 2: A linear regression design

The first experiment in (Ratcliff & Rouder, 1998) is a brightness discrimi-

nation experiment. There were two manipulations of interest. First, there

was a speed-accuracy instruction (participants were either instructed to

be fast or to be accurate) and second, there was a manipulation of bright-

ness, which increased with equal steps over 33 levels. However, in order to

ensure a sufficient number of trials in each cell, we collapsed the five dar-

kest and five brightest levels into a single level each, leaving 25 levels of the

brightness variable and the number of trials varying across conditions from

61 to more than 200, with an average of about 150. The two variables were

completely crossed in a 2 × 25 design, yielding 50 conditions (conditions

1-25 have an ‘accuracy’ instruction and 26-50 have a ‘speed’ instruction).

The task was a 2AFC procedure, whereby each subject was shown a sti-

mulus and had to judge whether this stimulus was drawn from a ‘bright’

distribution or from a ‘dark’ distribution (the two distributions overlap-

ped significantly, so subjects could not be highly accurate). Feedback was

given after each trial.

From the manipulations, we can expect two things. Firstly, we expect

that the speed-accuracy instruction will have an effect on boundary separa-

tion. Secondly, we expect that as brightness of the stimulus increases, the

drift towards the ‘bright’ response increases. Note that for this analysis, we

change the interpretation of the model’s upper and lower boundaries. We

will now say that a hit on the upper boundary leads to a ‘bright’ response,

and on the lower to a ‘dark’ response.1 The drift rate is hence no longer

a measure of ability to respond correctly, but of a tendency to respond

1Changing the response coding is in general only necessary if there is a very high
proportion of correct - or error - responses, so that one of the marginal distributions
of the model is represented by only a few data points. Here there is no substantive or
statistical reason that compels us to do this; we merely take this approach for illustrative
reasons.
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‘bright’ (and a negative drift rate can now reasonably occur, indicating

a tendency to respond ‘dark’). Because the responses are not classified

as correct or wrong, the assumption for the EWMA method that guesses

are equally distributed across responses (i.e., that 50% of the guesses are

‘bright’) no longer holds. Accordingly, we switched off the EWMA prepro-

cessing. For the same reason, the ‘fast guesses’ component of the mixture

model is no longer a valid representation, thus we will assume that the

weight γ is equal to zero.

To perform the analysis, we defined a series of three models, each

a more complex version of the former. In all models, we defined that

there should be two different levels of the parameters a, z, and sz:

one for the conditions with accuracy instruction and one for those with

speed instruction. To do this, we constructed the following design ma-

trix for these parameters: Da = Dz = Dsz =





125 025

025 125



, which

has two columns with 25 ones and 25 zeros each. Additionally, in Mo-

del 1 we will allow v to evolve linearly with the brightness manipu-

lation, while allowing different regression slopes and intercepts for dif-

ferent speed-accuracy instructions: Dv =





125 L 025 025

025 025 125 L



, where

L =
[

3 6 7 . . . 27 28 31
]T

represents the 25 brightness levels

(with the first and last values adapted to reflect the average of the

five groups that were pooled there). The other design matrices im-

pose the requirement that there is no change across conditions: P1 =

{Da×a∗,150×Ter
∗,150×η∗,Dz×z∗,Dsz×sz

∗,150×st
∗,Dv×v∗}.

However, the restriction that drift rates should increase linearly with

the brightness manipulation is hardly tenable, both on theoretical grounds

(because performance has upper and lower bounds) and due to oppor-

tunistic inspection of Ratcliff and Rouder’s (1998) results. In fact, in
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Table 1.9: Fit statistics from the model queue for one participant (Example 2).

Model Λ df ∆Λ ∆df p AICc BIC

1 23516.8 14 23545 23642
2 23213.64 20 303.14 6 <.0001 23254 23393
3 23153.26 60 60.38 40 .0202 23274 23692
4 23086.12 351 67.14 291 .9999 23821 26236

their article, drift rate increases with brightness like a sigmoid func-

tion. Thus, in Model 2, we add a quadratic, cubic and quartic com-

ponent to the design, to mimic an S-shaped function. Now, Dv =




125 L L2 L3 L4 025 025 025 025 025

025 025 025 025 025 125 L L2 L3 L4



, where the ex-

ponents indicate the element-wise power function (i.e., each element of the

vector L is taken to that power). The other design matrices are the same

as in Model 1. Note that, for numerical reasons, we rescaled each column

of Dv such that the values were in the range (00.5).

In Model 3, we allowed drift rates to vary freely: P3 =

{Da×a∗,150×Ter
∗,150×η∗,Dz×z∗,Dsz×sz

∗,150×st
∗, I50×50×v∗}.

Finally, in Model 4, all diffusion parameters can vary freely across

conditions.

Models 1 to 4 have 1420, 60, and 351 free parameters, respectively, and

each model is nested in the next. The models were fitted to the data of one

participant. Table 1.9 displays the fit statistics of each model, and shows

the Λ and ∆Λ-statistics with their degrees of freedom. Figure 1.5 shows

the drift rates according to models 1, 2, and 3 as a function of brightness.

As can be seen from the table, Model 2 outperforms Model 1 greatly,

indicating deviations from linearity (as is obvious from the figure). Mo-

reover, Model 3 performs slightly better than Model 2. Finally, Model 4

does not perform significantly better than Model 3, indicating that it is

not necessary to free all parameters in the model across conditions. The
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Figure 1.5: Drift rates of one participant in Experiment 1 of Ratcliff and Rouder
(1998). Drifts recovered by Model 1 are shown as dashed lines, with the steeper
line indicating the Speed condition. Drifts from Model 2 are full curves, and drifts
from Model 3 are stars. As can be seen, Model 1 provides a poor fit, while Model 2
is much closer to the separate drift rates, though with still some deviation left.

AICc and BIC statistics, in Table 1.9, show a preference for Model 2,

where a polynomial regression was imposed on the drift rates. In this case,

we would opt for Model 2, since the both information criteria point in that

direction and the likelihood ratio test does not give convincing evidence

against Model 2.

The recovered basic parameters and their standard errors of estimation

under Model 2 are given in Table 1.10. Unlike in Example 1, here all

parameters significantly deviate from zero (or from 1, in the case of π).
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Table 1.10: Recovered basic parameters and associated standard errors (SEs)
for Example 2, under Model 2, for one participant. Wald tests are for unless
indicated otherwise. Basic drift parameters (1), (2), and (3) refer to the accuracy
condition, and (4), (5), and (6) refer to the speed condition. Other parameters
indexed with a (1) apply to the accuracy condition and with a (2) to the ‘speed’
condition.

Parameter Estimate SE Z p

a∗(1) 0.1688 0.0016 103.50 <.0001†

a∗(2) 0.0436 0.0000 >106 <.0001†

Ter
∗
(1) 0.3065 0.0008 369.61 <.0001†

η∗(1) 0.0252 0.0085 2.95 .0016†

z∗(1) 0.0821 0.0012 71.13 <.0001†

z∗(2) 0.0218 0.0000 >106 <.0001†

sz
∗
(1) 0.0476 0.0078 6.12 <.0001†

sz
∗
(2) 0.0426 0.0000 >106 <.0001†

st
∗
(1) 0.1427 0.0023 62.27 <.0001†

v∗(1) -0.5892 0.0155 -37.96 <.0001

v∗(2) -3.9174 0.2829 -13.85 <.0001

v∗(3) 0.8681 0.0336 25.86 <.0001

v∗(4) 6.4215 0.6207 10.35 <.0001

v∗(5) -0.1671 0.0188 -8.90 <.0001

v∗(6) -2.0014 0.3373 -5.93 <.0001

π∗(1) 0.9582 0.0041 -10.28‡ <.0001†

† Using Stram and Lee’s (1994) corrected reference distribution Z2 ∼ .5χ2
0 + .5χ2

1.
‡

Testing H0: π∗
(1) = 1.

With π̂ ≈ .9606 about 4% of the data (across conditions) are estimated to

be contaminants.

For the two other participants, AICc and BIC values did not agree,

but the pattern of significance between models was identical to that in

Table 1.9.
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1.9 Conclusion

In the present paper, we investigated and enhanced the practical applicabi-

lity of the diffusion model for reaction time and accuracy data and explored

several avenues of improvement. We suggested the use of design matrices

in order to regress diffusion model parameters onto covariates from an

experiment and discussed the use of the likelihood ratio statistic for sta-

tistical inference and model selection. With this statistical framework to

complement diffusion modeling, the simultaneous analysis of reaction time

and accuracy data is moved closer to the realm of well-known statistical

procedures such as ANOVA and multiple linear regression. We presented

simulation studies where the small-sample behavior of the likelihood ratio

statistic was found suitable. We also presented outlier treatment methods

and showed that they perform well. Furthermore, we have implemented

these methods in a freely available software tool (DMAT; Vandekerckhove

& Tuerlinckx, 2008).

Some further extensions of the Ratcliff diffusion model now present

themselves. A first extension that readily flows from the present study

is to implement other (non-linear) constraints on model parameters than

the ones permitted by the design matrix method. For example, in our

second application we imitated a sigmoid function in an ad-hoc way (with

a polynomial of a high degree), whereas a better solution would be to

simply use a non-linear link function (such as a logit or probit link). A

second possibility for advancement is to move from classical frequentist

parameter estimation to a Bayesian framework (as in Lee, Fuss, & Navarro,

2007). Finally, further research is needed to investigate the statistical

qualities of Quantile Probability Products estimators (Brown & Heathcote,

2003; Heathcote & Brown, 2004; Heathcote, Brown, & Mewhort, 2002;

Speckman & Rouder, 2004), since this estimation method seems preferable
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if the range of the reaction time distribution is unknown, but its qualities

for statistical inference are not yet explored.
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1.A Outlier Treatment Methods

Exponentially weighted moving average filter

The exponentially weighted moving average method (EWMA; Chandra,

2001; Roberts, 1959) is a statistical quality control method that can detect

shifts in performance as reaction times increase. A cut-off threshold is set

where the performance is judged to be above chance level.

The first step in the application of the method is sorting the reaction

times from short to long. In effect, we will then look at our data set as if it

described a binary process that unfolds (and changes) over time. As time

progresses (i.e., RT increases), the process will start to shift away from

its ‘control state’ (with 50% accuracy) and tend toward a biased process

(with accuracy > 50%). The control process describes our expectation

regarding fast guesses, which is straightforward: Guesses are draws from

a Bernoulli process at chance level. Formally, if the sth observation (that

is, the response X(s), corresponding to the sth sorted reaction time T(s)) is

a guess, then X(s) ∼ Bernoulli(0.5). The control process should be a cre-

dible representation of fast guesses, otherwise this method will not work.

However, usually trials in an experiment are counterbalanced and rando-

mized in such a way that participants cannot significantly exceed chance

level accuracy without paying proper attention to the stimuli presented.

If measures have been taken to avoid participants from being ‘cued’ to a

correct (or error) response even when guessing, then it is reasonable to

expect accuracy to be around 50% for fast guesses in a two-alternative
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forced choice task.

To determine the minimal response time at which the system no longer

follows this control process, we take the reaction times from all conditions

(all RTs still sorted fast to slow), and then analyze their corresponding

responses. Of these responses, we iteratively compute the EWMA statistic

cs = λxs + (1 − λ)cs−1, where xs = 1 if the response corresponding to the

sth sorted reaction time was correct and 0 otherwise, and λ ∈ (01] is a

weight parameter which controls how many of the last observations are

used. If λ is 1 only the sth observation is used and if approaches 0, all

observations from the first to the sth are weighted equally. We will then,

at each iteration, calculate the upper control limit (UCL) of this process,

and check if the EWMA statistic cs exceeds this value.

In practice, some constants need to be defined. The first is the in-

control mean of the process, which in this context represents the expected

average performance of a fast guess. We denote this parameter c0, and ini-

tialize it to 0.5. Second is the in-control standard deviation σ0 (standard

deviation of X), which is also equal to 0.5 (this follows from the properties

of the Bernoulli distribution). A third constant for EWMA is the weight

parameter λ. We choose λ = 0.01, thereby accounting for many previous

data points. The final constant is the width of the control limits (in stan-

dard deviations). To ensure a sensitive test, we set L to 1.5 (a relatively

low value).

Given these parameters, we now compute cs < UCLs = c0 +

Lσ0

√

λ
2−λ

[

1 − (1 − λ)2s
]

and check if it is smaller than the upper control

limit: . If this inequality is true, then the process is judged to be within

the limits of the control model, and we label observation s as a ‘fast guess’.

When the upper control limit is exceeded, we decide that the probability of

giving a correct response significantly exceeds 0.5 from this reaction time
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on, and stop the iteration process. The reaction time at which the UCL

was breached is then taken as the threshold, and all reaction times below

it are censored.

The EWMA method is commonly illustrated with a control chart,

which depicts the evolution of cs as a function of increasing reaction time.

Figure 1.6 shows an example control chart, with the EWMA statistic in-

dicated by a full line, the control state by a dotted line and the control

limits by a shaded region around the control state. This control chart is

based on data that were generated from the parameters shown in Table 1.1

(set A), with 250 data points in each condition, and 5% fast outliers added

to the 200-400ms domain, uniformly distributed and with 50% accuracy.

The EWMA algorithm returns a cut-off value of 322ms, which is reaso-

nable considering that the diffusion process with these parameters starts

around 300ms, but there are contaminants between 200 and 400ms.

Mixture model approach

The CDF of the diffusion model extended with the mixture model approach

is

FXT (xtθ) = πDiff(xtθ) + (1 − π)γ
1

2
U(tT−T+) (1.2)

+ (1 − π)(1 − γ)Pr(X = x|θ)U(tT−T − +) (1.3)

where U(tAB) indicates the cumulative density function of a uniform dis-

tribution from A to B, evaluated at t. Diff(xtθ) is the joint probability that

the response equals x (x = 0 for an error and x = 1 for a correct response)

and that the response is given at time t or before, under a Ratcliff diffu-

sion model with parameter vector θ (thus, Diff(xtθ) = Pr(X = xT ≤ t|θ)).
The exact formula for this joint probability is provided in Tuerlinckx (2004;

Equations 1, 2, and 3). Further, T− and T+ are the minimum and maxi-



1.A Outlier Treatment Methods 67

Figure 1.6: An EWMA control chart showing guessing for reaction times lower
than approximately 322ms. See text for details.

mum of the assumed response time distributions for contaminants. Tech-

nically, T− and T+ are parameters, but in the remainder of this paper we

will not treat them as such. They are not included in the parameter es-

timation routine, but are directly estimated with the observed minimum

and maximum response times (for each condition and each participant),

respectively.
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1.B Minimizing the Multinomial Log-Likelihood Function

Loss function

DMAT uses a multinomial likelihood function (MLF), which expresses the

likelihood of observing a certain proportion of responses in a given number

of reaction time bins, and should therefore be maximized in order to find

good parameter estimates.

To define B reaction time bins, we select B − 1 monotonically in-

creasing bin edges q1, . . . , qB−1 and define q0 = 0 and qB = +∞. The

observed frequency in bin b, in condition c, for response x, is then sim-

ply Ocxb =
∑ncb

j=1 I (qb−1 < tcxj ≤ qb), with ncx being the number of data

points with response x in condition c. I(·) is the indicator function (which

takes the value 1 if its argument is true and 0 otherwise). The predic-

ted (or expected) proportion of x responses in bin b of condition c equals

Pcxb = FXT (xqbθc) − FXT (xqb−1θc), where θ indicates the parameter vec-

tor for condition c, and FXT is the CDF of the RDM (or of the extended

Ratcliff diffusion model, see Equation 1.3).

The negative log of the MLF that needs to be minimized is then defined

as:

Λ = −2(l) = −2log

(

C
∏

c=1

1
∏

x=0

B
∏

b=1

POcxb

cxb

)

(1.4)

= −2

C
∑

c=1

1
∑

x=0

B
∑

b=1

Ocxblog (Pcxb) . (1.5)

We will hereafter refer to Equation (B1) as ‘the’ multinomial

(log)likelihood function (MLF). During parameter estimation this will be

the loss function we will be minimizing. An alternative to the MLF is

the more common chi-square loss function as described by Ratcliff and
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Tuerlinckx (2002). It is shown by Read and Cressie (1988) that both are

intimately related. DMAT allows the user to choose between these two,

but the MLF is the default option.

We give two final remarks about the loss function. First, in light of

the recent discussion about the appropriateness of fixed versus percentile

based boundaries to define the bins (see Heathcote et al., 2002; Speckman

& Rouder, 2004; Brown & Heathcote, 2003; Heathcote & Brown, 2004),

in DMAT we have left the choice to the user. To briefly summarize this

discussion: A statistic computed using percentile based (data-dependent)

bin edges is not a true chi-square statistic. The practical consequence

of this is that the (p-value of the) test statistic ∆Λ cannot be used for

inference. There is also the third option of using fixed bin edges calculated

from the average percentile-based bins over a wide range of parameter

values (and this is the default choice in DMAT). The fits reported in this

paper are based on these realistic bin boundary values but as said before,

the user can opt for another method.

A second remark is that some parameters in the model cannot take

all possible real values and this may lead to numerical difficulties during

the optimization. There are several possible strategies to avoid these pro-

blems, but in the estimation algorithm we simply define that ∆Λ = 1010

if the parameter set θ is outside the allowable parameter space. This pe-

nalty value ensures that the optimization algorithm will remain inside the

parameter space.

Optimization

In this subsection, we discuss three aspects of our optimization procedure:

the starting points, the algorithm and ways to avoid local minima.

First, we use a method of moments to produce a good initial estimate
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of the parameters. If the user of DMAT did not provide the algorithm

with a starting guess, DMAT uses the estimates from the EZ-diff model

(Wagenmakers et al., 2007) to generate a plausible starting point for the

first model in the queue. For subsequent models in a queue, DMAT uses

the final estimates of the previous model as starting point (if necessary,

a linear transformation or regression will be applied to ensure that this

initial guess does not violate any restrictions of the present model). For

the parameters of the RDM that are not represented in the EZ-diff model,

we make the following (arbitrary) guesses: η = 0.2, z = a/2, sz = 9
20a, and

st = 9
10Ter.

Second, the algorithm we use to find the optimum of the loss function

is the Nelder-Mead Simplex algorithm (NMS algorithm; Nelder, 1965),

with a few adaptations. In our algorithm, we allow a single NMS run to

proceed for 200 steps, after which the size of the simplex shape is reset to its

original size. We do this because we have observed that (due to numerical

issues) the optimizer sometimes converges in a local minimum. Resetting

the simplex size allows the algorithm to escape from such local minima.

Usually, the simplex size is reset three times, thus performing four runs

with maximally 200 steps. When these are finished, we start a fifth, longer,

NMS run with maximally 5000 iterations. Usually, however, the last NMS

run converges before that. DMAT users can change the number of NMS

runs, as well as the maximum number of iterations allowed. The final

phase of the algorithm is a single quasi-Newton step, where the first and

second derivatives of the objective are numerically approximated and used

to find the local minimum near the point where the NMS run converged.

This provides us with a numerical approximation to the Hessian matrix

(the matrix of second derivatives) at the minimum, which is then used to

verify that the solution point is in fact a minimum (the Hessian should be

positive definite), and to calculate estimates of parameter standard errors.
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Third, we incorporate another strategy for identifying and escaping

suspected local minima. The fact that the algorithm has converged to a

minimum is still no guarantee that we have in fact found optimal parameter

estimates. A better parameter set might still exist in a region that our

algorithm has not visited. This is a very difficult problem and it is not

possible in general to give strong guarantees about the optimality of a set of

estimated parameters. Local minima seem to exist near those boundaries

of the parameter space where any of the variability parameters η, st, or sz

are zero (although it is possible that this is a true minimum for some data

sets).

To avoid local minima, the algorithm performs a jump when the va-

riance parameters are estimated to zero (sz and st will be changed to half

of their maximal value, and η will be, arbitrarily, reset to 0.2). After

making this jump, the NMS is restarted. We have experienced that with

this identify-and-jump strategy the algorithm often succeeds in locating a

better point in the parameter space.





A MATLAB toolbox

73





CHAPTER 2

Diffusion Model Analysis with MATLAB: a DMAT primer

Abstract

The Ratcliff diffusion model has proved to be a useful tool in reaction

time analysis. However, its use has been limited due to the practical

difficulty of estimating the parameters. We present a software tool, the

Diffusion Model Analysis Toolbox (DMAT) intended to make the Ratcliff

diffusion model for reaction time and accuracy data more accessible to

experimental psychologists. The tool takes the form of a MATLAB tool-

box and can be freely downloaded from http://ppw.kuleuven.be/

okp/dmatoolbox . Using the program does not require a background in

mathematics, nor any advanced programming experience (but familiarity

with MATLAB is useful). We demonstrate the basic use of DMAT with

two examples.

75
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2.1 Introduction

The Ratcliff diffusion model (RDM) has garnered significant attention in

recent years as a model for the simultaneous analysis of reaction time and

accuracy data. There are three main reasons for its popularity. Firstly, it

can be applied in many different fields (Ratcliff, 1978, 1981, 1988, 2002;

Ratcliff, Gomez, & McKoon, 2004; Ratcliff & Rouder, 1998, 2000; Ratcliff,

Thapar, & McKoon, 2004; Ratcliff, Van Zandt, & McKoon, 1999; Strayer

& Kramer, 1994; Thapar, Ratcliff, & McKoon, 2003). Secondly, it performs

extraordinarily well in terms of parsimony and description of interesting

patterns in reaction time data (e.g., Ratcliff, 1987; Ratcliff & Rouder,

1998). Thirdly and finally, its main parameters have interesting process

interpretations that allow for substantive insights (Voss, Rothermund, &

Voss, 2004). If the RDM has one significant drawback, it is that it is

prohibitively difficult to to apply in practice, to the point where methods

for fitting the RDM to experimental data are a research topic in their own

right (Ratcliff & Tuerlinckx, 2002; Tuerlinckx, Maris, Ratcliff, & De Boeck,

2001; Tuerlinckx, 2004; Vandekerckhove & Tuerlinckx, 2007b; Voss & Voss,

2008; Wagenmakers, van der Maas, & Grasman, 2007). Only recently,

attempts are being made at making the RDM more applicable in research

practice (Vandekerckhove & Tuerlinckx, 2007b, 2007a; Voss & Voss, 2007).

This paper presents a MATLAB toolbox that is exactly such an attempt.

In the next four sections, we will (1) briefly describe the RDM, (2)

repeat the basics of matrix methods in statistical modeling, (3) provide

some practical information regarding a new tool, the Diffusion Model Ana-

lysis Toolbox (DMAT), and (4) give two didactic examples with code. For

conceptual details regarding the RDM, the fitting procedures, and asso-

ciated statistical treatment, the reader is referred to Vandekerckhove and

Tuerlinckx (2007b).
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Figure 2.1: A graphical representation of the diffusion process. The curved line
indicates the amount of evidence for the ‘upper’ response as it evolves over time.
At about 700ms, the upper boundary is crossed and the process ends. See text and
Table 2.1 for more detail.

2.2 The Ratcliff diffusion model

The basic principle behind the RDM is that of integration of noisy evidence

over time. It is assumed that, in order to make a speeded choice between

two options, evidence is accumulated sequentially over time. As soon as

sufficient evidence towards either option has gathered, the process stops

and outputs a decision (absorbing boundaries). The accumulation process

is governed by two distinct forces, namely a tendency to drift towards

either boundary (drift rate), and a stochastic component in the step size

and direction on the decision dimension. The process itself is not assumed

to be necessarily unbiased: the starting point of the process may be closer

to one boundary than the other, increasing the a-priori probability for

one response. Figure 2.1 shows a graphical representation of the diffusion

process.

In all, the RDM as implemented in DMAT has nine free parameters

for each condition. Table 2.1 lists them, their notation, and their common
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Table 2.1: The nine free parameters of the RDM, as implemented by DMAT.

Symbol Parameter Interpretation
Decision process a Boundary separation Speed-accuracy trade-off

(high a means high accuracy)
z Starting point Bias for either response

(z = a/2 is neutral)
v Drift rate Amount of input information;

Quality of the stimulus
Nondecision Ter Nondecision time Sum of all other processes

involved (motor response time,
encoding...)

Intertrial variability sz Intertrial range of z Participant’s variability in
bias

st Intertrial range of Ter Participant’s variability in
nondecision time

η Intertrial SD of v Spurious differences in
stimulus quality, or variability
in attention or motivation

Mixture model π Proportion non-outliers Proportion of data resulting
from a diffusion process

γ Proportion guesses Proportion of outliers that is a
guess (and not a delayed startup)

interpretation.

2.3 Matrix notation and design of experiments

In order to impose restrictions on parameters across conditions, DMAT

makes use of a matrix modeling method that is similar to the standard

technique of general linear modeling (see Vandekerckhove & Tuerlinckx,

2007b, for a more detailed explanation and examples of this method).

In particular, if there are c conditions, a vector Ψ
c×1 of a given type of

parameters across conditions is assumed to be the result of the matrix

product D
c×m× Θ

m×1, given that D is a design matrix and that Θ is a vector

with free parameters that remain. Crucially, Θ contains no more elements

than does Psi (m ≤ c), often resulting in a more parsimonious model with

fewer parameters to estimate.

Depending on how the design matrix is formulated, the restrictions

change. If, for example, D is a column of ones, then for any value of Θ,
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the product Ψ will be a vector with all elements equal. On the other

hand, if D is the identity matrix, then Ψ will be identical to Θ, and no

restrictions will have been applied. If D contains a column of ones and

a second column of covariate values, restrictions in the form of a linear

regression are applied. The Θ̂ vector will then contain an estimate for the

intercept as its first element and the regression weight of the linear model

as its second element.

Of course it is possible to construct even more complex models, such

that a parameter may be made dependent on more than one covariate,

linear or categorical; on their interactions; on participants; and so on.

Also, different designs may be implemented for different parameters.

DMAT requires that a design matrix is formulated for each parameter

of the model. In most cases, however, the design matrix will be the column

of ones, indicating no variability across conditions. (This is also the default

setting for DMAT models.)

2.4 The Diffusion Model Analysis Toolbox

2.4.1 Requirements

The DMA Toolbox requires that you have MATLAB 7.2 (R2006a) or a

more recent version installed. The Optimization Toolbox also needs to be

installed. If they are available, DMAT will make use of the Statistics and

Symbolic Math toolboxes, but these are not required.

The toolbox was developed and tested on Windows and Linux plat-

forms.
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2.4.2 Installation

The software tool we are presenting is a MATLAB toolbox that can be

freely downloaded via http://ppw.kuleuven.be/okp/dmatoolbox .

Upon filling out a form, you will be e-mailed a link where a ZIP archive is

available. The archive contains some 300 files, 70 of which are MATLAB

functions. Unpackage the file to the

toolbox folder of your MATLAB install, and then execute the included

installer function from the MATLAB command window. The installer will

guide you from there. If you did not unpackage the ZIP archive in the

toolbox directory (e.g., because you do not have write access to it), the

installer will ask you to locate it first. When the installation is finished,

you can test the toolbox by calling the function test main. Since DMAT

is constantly under development, its most recent version, bug reports and

fixes can be found on the website.

2.4.3 End User License Agreement

While the installer runs, you will be asked to read and accept an End User

License Agreement. Please note that, while DMAT and its source code

may be downloaded at no cost, it is not permitted to redistribute the code

or derived code without the authors’ consent. We welcome cooperation

from third parties in further developing DMAT, but in order to maintain

transparency regarding exactly which methods an end user has implemen-

ted, we want the distribution of this toolbox to remain centralized.
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2.5 Usage and examples

2.5.1 Two interfaces

DMAT features both a graphical user interface (GUI) and a command

interface (CI). To start the GUI, simply type “dmatgui” in the MATLAB

command window. In the examples, we will focus mainly on the CI, which

requires some coding. Using the GUI should be largely self-evident if the

commands for the CI are known. Where it isn’t, we will explicitly mention

how the GUI expects and handles user input.

2.5.2 Data sets

For either interface, the data set should be provided in a proper format,

meaning that it should be a three-column matrix where each row indicates

a trial in the experiment. Of the three columns, the first contains the

condition, the second contains the response type (0 or 1, usually meaning

incorrect and correct) and the third contains the reaction time in seconds.

If the data matrix contains only two columns, all trials will be assumed to

be in the same condition. If you use the CI, the data should be contained

in a double array. For the GUI, it can be a double array in a MATLAB

file (.mat), or ASCII data in a tab-delimited file (.tab or .dat), a comma-

delimited file (.csv), or a space-delimited file (.txt).

2.5.3 General usage of the toolbox: Command interface

2.5.3.1 Input

The most important function in the DMA Toolbox is called “multiestv4.”

This function accepts as its first input a data set (as a three-column double

array) and as second input an optional options structure. A large part of

using DMAT is constructing this options structure: a MATLAB variable
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with many fields containing different possible settings. Table 2.2 gives an

overview of the settings (field names), their default values, and their ef-

fects. The default options structure can be obtained by calling the function

multiestv4 without input arguments. Then, you can edit the fields of this

structure to fit your needs. The standard syntax for this is:

opts = multiestv4();

opts. fieldname = value;

And to estimate the parameters, then:

output = multiestv4(data,options);

This will return an output structure, which contains information about

the model fit and the optimization algorithm.

2.5.3.2 Output

Like the options structure, the output structure is a MATLAB variable

which has many different fields, each one containing information about

the model fit or the algorithm. Table 2.3 contains information about the

available fields and what they mean. Output fields can be browsed from

the command window. The following syntax will display the contents of

the field fieldname:

output( model). fieldname,

where model refers to the numerical index of the model you are investiga-

ting. for example, output(2).Fitvalue will return the value of the deviance

function of the second model, and output(2).Df will return the number of

free parameters in the model.
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Table 2.2: The fields of DMAT’s options structure, with default values and
effects.

Field name Default value (multiestv4) Effect / Use

DesignMatrix <Columns of ones> Parameters vary across conditions?

Display ’off’
How much output should DMAT
give to the command window?

EWMA <structure>
Provide parameters for the EWMA
procedure. Defaults are λ = .01,
L = 1.5, s = .5.

EstimationMethodScalar
5 (Multinomial likelihood

with fixed bin edges)

Objective function to minimize
(Multinomial likelihood or χ2?
Fixed bin edges or percentiles?)

FixedBinEdges

[

.30 .36 .42 .52 .80

.38 .47 .56 .70 1.0

] If fixed bin edges, which values to
use (in seconds, first row for
corrects, second for errors).

FixedValues []

Provide a condition-by-parameter
matrix with NaN for free
parameters and a specific value
for fixed ones.

Guess []

Starting position for the
optimization (condition-by-
parameter matrix). If none given,
DMAT finds one.

GuessMethodScalar 1
If DMAT has to generate a guess,
1 causes it to use ezdiff∗ and
2 uses a slight perturbation.

LongSimplexRuns 1
The number of times the long
simplex run should be repeated.

MaxIter 5000
The maximum number of iterations
for long simplex runs.

Name ’No name given’ A name for the model.

NoFitting 0
If set to 1, only construct objective
function, no actual fitting.

NonparametricBootstrap 0 Nonparametric bootstrap iterations.

ObjectiveDecimals 7
Number of significant decimals for
the objective.

OutlierMax [] Maximum RT for inclusion.
OutlierMin [] Minimum RT for inclusion.
OutlierTreatment ’None’ Which outlier treatment to use.
ParameterDecimals 7 Significant decimals for parameters.
ParametricBootstrap 0 Parametric bootstrap iterations.

Percentiles

[

10 30 50 70 90
10 30 50 70 90

]

If estimation with percentiles,
which ones to use (values between
0 and 100; first row for corrects,
second for errors).

ShortSimplexRuns 3
The number of times the short
simplex run (200 iterations) should
be repeated.

SpecificBias []
Per condition, value of B, where
B = z/a. If NaN, z and a are
estimated separately.

∗ The EZDIFF algorithm is described in Wagenmakers et al. (2007) and in Vandekerckhove
and Tuerlinckx (2007b).
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Table 2.3: The fields of DMAT’s output structure, with brief explanation of their
contents.

Field name Contents

DesignVector Point estimates of the free parameters
Df Number of free parameters
FitInfo Fit indices of the model
Fitvalue Deviance of the model
Hessian Estimate of the Hessian matrix at the minimum
Minimum Estimate of the entire parameter set
Name Name of the model

NonparametricBootstrapMean
If requested, nonparametric bootstrap estimate of
entire parameter set

NonparametricBootstrapStdErr
If requested, nonparametric bootstrap estimate of
parameters’ standard errors

NonparametricBootstraps
An output structure for each nonparametric bootstrap
iteration

Options The options structure that the user provided

OutlierReport
If requested, information regarding outlier
treatment

ParametricBootstrapMean
If requested, parametric bootstrap estimate of
entire parameter set

ParametricBootstrapStdErr
If requested, parametric bootstrap estimate of
parameters’ standard errors

ParametricBootstraps
An output structure for each parametric bootstrap
iteration

Simplex
Information regarding the simplex runs (convergence
time, number of steps...)

StdErr
Estimate of the parameters’ standard errors (based on
the Hessian matrix)

Time Total time needed for fitting this model

Warnings
Anything the user might need to know (e.g., if the
Hessian indicates poor model fit)

2.5.3.3 Further processing

If two models are nested, then the difference in their deviances follows

a chi-square distribution with a number of degrees of freedom equal to

the difference in number of parameters, under the null hypothesis that

the models are equal. Thus, the following syntax (using DMAT’s chi2test

function) will give the p-value of the difference between two models:

>> x2 = output(1).Fitvalue-output(2).Fitvalue;

>> df = output(2).Df-output(1).Df;

>> p = chi2test(x2,df);
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A convenient function in this regard is qtable, which shows different

fit values of models, and also shows the p-value of the difference in fit

each pair of consecutive models. (Note that this implies that the p-values

reported in a certain row are only correct if that model is nested in the

preceding model.)

2.5.4 General usage of the toolbox: Grapical user interface

2.5.4.1 Input

In the GUI, you first need to load the data by clicking the “Browse” button

and finding the data set (that you saved somewhere). When you have

set all the options to your liking, the model can be added to the model

queue by clicking the “Current Model” button. The model queue stores

series of models that can be fitted in a batch submission. This is often

advantageous, since each set of parameter estimates can be used as an

initial guess of the next model, resulting in an increase in efficiency. In

particular, if subsequent models are nested, then the parameter estimates

of the more restrictive model will often be a good starting point for the less

restrictive model. DMAT will perform the necessary linear transformations

automatically.

Then you can start to define the next model and click “Current Model”

again when you are finished. Click “Run” to start parameter estimation,

or save the model queue with the “Save” button. Note that in the “Save

as...” window you can choose to save the queue in a DMAT native format

(*.dmq), or as an ASCII M-file that can be viewed, edited, and run from

the command line. Both *.dmq files and generated M-files can be re-

loaded into the GUI at a later time time by clicking the “Load” button

(but you have to load a data set first, and the models in the loaded queue

have to be appropriate for that data set, i.e., have the same number of
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conditions). Note that DMAT, if able, automatically makes emergency

back-ups (both of the most recent queue and of intermediate estimation

results), and if something should go wrong, calling the dmatrescue function

from the command interface might bring relief.

2.5.4.2 Output

As soon as the algorithm has started, an output window will replace the

DMAT main window, allowing you to browse some descriptive statistics.

The window will be updated as results from the queue become available.

You can simply select the model and output type from two lists on the left

hand side.

2.5.5 Simulating data

In the examples that follow, we will use simulated data. DMAT contains

several functions that allow you to simulate data sets that are ready for

use. Appendix 2.A shows a simple sequence of commands that will produce

a data set with three conditions, which differ only in drift rate. In the

GUI, simply click the “Simulator” button. After you enter the number of

conditions, click “Set” and then input the parameter set and the number

of data points points desired. Then click “Simulate and Save,” select a

file name and location, and click “Close.” You cannot input a seed for the

random number generator within the GUI.

2.5.6 Example 1: A simple design

2.5.6.1 Data set

For our first example, we will imagine an experiment with three condi-

tions. The difference between conditions is supposed to be in the quality

of a presented stimulus; hence we are interested in the difference in drift
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rates. For our data set, we will use the one that results from the code in

Appendix 2.A.

2.5.6.2 Input

To analyze these data, we will attempt to fit two models. In one model,

we will make the assumption that all drift rates are equal (the “reduced

model” or “null model”). In the second model, we will relax that assump-

tion. By comparing the goodness-of-fit of these models, we can investigate

the effect of condition on drift rate (much as we would in ANOVA). As

explained in the section on matrix representations, constraining equality

across conditions implies a design matrix which is a column of ones. Ap-

plying no constraints on a given parameter can be achieved by using the

appropriate identity matrix as design matrix.

Appendix 2.B shows code for fitting these two models. Note that the

only setting we have adapted is the DesignMatrix field. Usually, the rest

of the default settings provided by multiestv4 are well suited.

In the GUI, you can simply click “Current Model” as soon as the data

set is loaded, since the default model doesn’t need to be changed for Mo-

del 1. For Model 2, the design matrix for drift rate (v) needs to be changed

to an identity matrix. Click the drop-down menu next to “View/Edit de-

sign matrix” and select “v.” In the window that pops up, you can choose

to manually input an identity matrix, or simply select “Identity” in the

drop-down menu. Confirm with OK and click “Current Model” to add

the second model to the queue.1 Finally, click “Run” to start parameter

estimation.

1Actually, we have built some short-cuts into the DMAT GUI that make this example
even easier. Load the data, click “Predefined,” select “No effects” and “Effect on v only,”
and click “Add” and then “Run.”
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2.5.6.3 Output

We can inspect the best fitting parameter set of the second model in the

usual way:

>> output(2).Minimum

ans = 0.152 0.300 0.061 0.112 0.015 0.102 0.403

0.152 0.300 0.061 0.112 0.015 0.102 0.175

0.152 0.300 0.061 0.112 0.015 0.102 0.003

2.5.6.4 Statistical processing

We can find the p-value of the difference in deviance between the two

models (we know the number of parameters to be estimated increased by

2 from Model 1 to Model 2):

>> x2 = output(1).Fitvalue-output(2).Fitvalue

x2 = 945.317

>> p = chi2test(x2,2)

p = 0.000

This result indicates that there is a highly significant effect of condition

on the drift rate—which is as we expected. To get a quick summary of the

model fits, use the qtable function (see Appendix 2.B for the output that

would yield).

2.5.7 Example 2: A more complicated design

2.5.7.1 Data set

For our second example, we simulate data with eight conditions. Condi-

tions 1 through 4 contain an accuracy instruction and 5 through 8 contain

a speed instruction (influencing boundary separation). A second manipu-

lation, within these groups, pertains to the quality of the stimulus (in-

fluencing drift rate). This time, however, the manipulation is a continuous
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covariate X, which takes the values 0.2, 0.8, −0.4, and 0.6. In Appen-

dix 2.C we present code that will generate such data.

2.5.7.2 Input

We will construct a queue of three models, differing only in the design ma-

trices. In the first model, we will apply no design (all parameters constrai-

ned to be equal across conditions). In the second model, the experimental

design is implemented (allowing the first four conditions to have a different

boundary separation from the last four, and constraining drift rate to be

a linear function of the covariate X). In the third model, we allow both

boundary separation and drift rate to vary freely across conditions (to test

for deviation from the design). Furthermore, we will tweak some settings

of the fitting algorithm. Firstly, we no longer want to use fixed reaction

time bins, but rather use Quantile Probability Products (Brown & Hea-

thcote, 2003; Heathcote & Brown, 2004; Heathcote, Brown, & Mewhort,

2002; see also Vandekerckhove & Tuerlinckx, 2007b). To this end, we we

give the EstimationMethodScalar option the value 6 (see DMAT’s inclu-

ded documentation for a table of valid values for this setting). We will

choose classical percentiles 10, 30, 50, 70, and 90, and add the first and

fifth percentile to achieve a better fit of the left slope of the RT distribu-

tion. Finally, we choose not to estimate the starting point z, but rather

fix it to a/2, since nothing in the experiment has given us cause to assume

an a-priori bias on behalf of the fictional participant. Appendix 2.C shows

all the code needed to provide DMAT with this input. In the GUI, the es-

timation method and percentiles can be set in the Advanced window, and

the bias can be set via the “Bias: Set” button in the main window. The

matrices have to be input manually (or pasted from an external editor).

Two things may be mentioned regarding the code in Appendix 2.C.
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Firstly, note the use of two short-cuts that are available in coding the de-

sign matrices. Supplying ’1’ (of data type char array) for a design matrix

will be interpreted as a column of ones and supplying [] (the empty array)

will be interpreted as an identity matrix. (Which are short-cuts in the sense

that you don’t need to figure out exactly how large these matrices ought

to be.) Secondly, note that in order for DMAT to recognize the “specified

bias” (the restriction that z = a/2), we need to supply a non-restrictive

design matrix for z. Otherwise, the design matrix restrictions will override

the specified-bias restriction (DMAT will print a warning when this hap-

pens). The non-restrictive design of course means the identity matrix (or

its short-cut, the empty matrix).

2.5.7.3 Output

We can see the difference between the three models by calling the qtable

function. In the resulting table, shown as Table 2.4, we we can see that

Model 2 outperforms Model 1 [χ2(2) = 4, 087.38, p < 10−10] indicating a

significant effect of the experimental design), but Model 3 does not out-

perform Model 2 [χ2(2) = 16.99, p < .1501]. Model 2 also has the lowest

AICc and BIC values. Finally, Figure 2.2 is a screenshot of the GUI,

showing drift rate as a function of condition. condition. The error bars

are in this case based on the Fisher information matrix (which is derived

from the Hessian matrix). If bootstrap analyses had requested, bootstrap

confidence intervals would be shown.

2.6 Summary

In this paper, we have presented DMAT, an application with a low ease of

use threshold that enables fitting and evaluation of the Ratcliff diffusion

model. We briefly described the model and the basic matrix methods used
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Table 2.4: Output of the qtable function in Example 2.

Deviance d-Deviance df d-df AICc BIC p
20206.10 NaN 6 NaN 20218.12 20255.24 NaN
16118.72 4087.38 8 2 16134.75 16184.23 0.00
16101.73 16.99 20 12 16141.95 16265.51 0.15

Note—Deviance is the badness-of-fit measure, d-Deviance is the difference between
consecutive models, df is the number of parameters in each model, d-df is the difference with
the previous model, AICc is the small-sample Akaike Information Criterion (Hurvich & Tsai,
1989), BIC is the Bayesian Information Criterion, and p is the significance of the difference

between consecutive models (based on a χ2 test of d-Deviance with d-df degrees of freedom).
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Figure 2.2: A screenshot from the DMA Toolbox. Parameter estimation is com-
plete and the user can browse through the output. The graph shows estimated drift
rates (and error bars of one standard error, obtained from the Hessian matrix) as
a function of condition, as obtained under the model that allows deviation from
the linear design.

in general linear modeling, which we have extended for use in diffusion

models. With two didactic examples, we demonstrated the use of DMAT.
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2.A Annotated code for generating random data in DMAT

Define a parameter set from which to sample

Parameter sets are matrices with one row for each condition, and one

column for each parameter. The parameters are a, Ter , eta , z , sz , st , v :

parameter_set = [.16 .30 .08 .12 .02 .10 .40

.16 .30 .08 .12 .02 .10 .20

.16 .30 .08 .12 .02 .10 .00];

Define simulation constants

There are two more constants that the simulation will need. First is the

number of data points in each condition, N. Note that you can choose bet-

ween providing N as a scalar, like here, or as a vector with one number

for each condition, like: N = [500 500 1000] . Secondly, since the simu-

lator makes use of random number generators, a ‘seed’ is needed. If you

provide none, a seed is selected with the help of the system clock. For

reproducibility, we choose a seed here:

N = 1000;

seed = 0;
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Simulate data

With the multisimul function:

data = multisimul(parameter_set,N,seed);

disp(data(1:10,:))

3.0000 1.0000 1.2130

2.0000 1.0000 0.4999

2.0000 1.0000 0.3589

2.0000 1.0000 0.3912

1.0000 1.0000 0.5518

1.0000 1.0000 0.4063

3.0000 1.0000 0.4475

2.0000 1.0000 0.3741

1.0000 1.0000 0.4261

2.0000 1.0000 0.4417

2.B Annotated code for fitting two nested diffusion models in

DMAT

Prepare the options structure

Get default options structure:

options = multiestv4

options =

DesignMatrix: 1x7 cell

Display: ’off’

EWMA: [1x1 struct]

EstimationMethodScalar: 5

FixedBinEdges: [2x5 double]

FixedValues: []

FitBnotZ: 0
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Guess: []

GuessMethodScalar: 1

LongSimplexRuns: 1

MaxIter: 5000

Name: ’No name given’

NoFitting: 0

NonparametricBootstrap: 0

ObjectiveDecimals: 7

OutlierMax: []

OutlierMin: []

OutlierTreatment: ’None’

ParameterDecimals: 7

ParametricBootstrap: 0

Percentiles: [2x5 double]

ShortSimplexRuns: 3

SpecificBias: []

Copy it, because we want to fit more than one model

options = repmat(options,2,1);

Prepare the design matrix for each model

In Model 1, all parameters are kept equal across conditions. In Model 2,

drift rate is allowed to vary freely:

O = ones(3,1);

I = eye(3);

design_matrix1 = {O,O,O,O,O,O,O,O,O };

design_matrix2 = {O,O,O,O,O,O,I,O,O; }

Insert the design matrices into the options structure

options(1).DesignMatrix = design_matrix1;

options(1).Name = ’No effect’;

options(2).DesignMatrix = design_matrix2;
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options(2).Name = ’Effect on v only’;

Invoke DMAT

Use the multiestv4 function to get parameter estimates:

output = multiestv4(data,options);

Starting model 1 of 2: No effect

Guess : 13482.80335984 (25-Dec-2008 20:40:24)

Simplex 1: 11644.02574703 (25-Dec-2008 20:40:28)

Simplex 2: 11635.47143151 (25-Dec-2008 20:40:32)

Simplex 3: 11635.46000666 (25-Dec-2008 20:40:37)

Simplex 4: 11635.46000546 (25-Dec-2008 20:40:44)

Final loss: 11635.46000546 (25-Dec-2008 20:40:47)

The recovered sZ parameters are suspect.

Trying again.

Guess : 11654.27977576 (25-Dec-2008 20:40:47)

Simplex 1: 11635.63165838 (25-Dec-2008 20:40:54)

Simplex 2: 11635.47863373 (25-Dec-2008 20:40:59)

Simplex 3: 11635.46420571 (25-Dec-2008 20:41:04)

Simplex 4: 11635.46000551 (25-Dec-2008 20:41:14)

Final loss: 11635.46000551 (25-Dec-2008 20:41:16)

The last convergence point was still a suspect result.

Returning to the best point found and giving up.

Warning: Hessian is not positive definite.

Starting model 2 of 2: Effect on v only

Guess : 11635.46000558 (25-Dec-2008 20:41:18)

Simplex 1: 10679.01165606 (25-Dec-2008 20:41:23)

Simplex 2: 10676.02448910 (25-Dec-2008 20:41:27)

Simplex 3: 10675.98667395 (25-Dec-2008 20:41:32)

Simplex 4: 10675.98344462 (25-Dec-2008 20:41:42)

Final loss: 10675.98344462 (25-Dec-2008 20:41:44)

The recovered sZ parameters are suspect.
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Trying again.

Guess : 10698.82098705 (25-Dec-2008 20:41:44)

Simplex 1: 10674.04939412 (25-Dec-2008 20:41:49)

Simplex 2: 10673.30388143 (25-Dec-2008 20:41:53)

Simplex 3: 10673.18461789 (25-Dec-2008 20:41:58)

Simplex 4: 10673.14120078 (25-Dec-2008 20:42:11)

Final loss: 10673.14120078 (25-Dec-2008 20:42:14)

Process results

Use the qtable function to get a concise summary of the model queue:

qtable(output)

-----------------------------------------------------------------------

Deviance d-Deviance df d-df AICc BIC p

-----------------------------------------------------------------------

11635.4600 NaN 7 NaN 11649.4974 11691.5046 NaN

10673.1412 962.3188 9 2 10691.2014 10745.1985 0.00000

-----------------------------------------------------------------------

2.C Annotated code for generating the data set and estima-

ting the models described in example 2

Simulating the data

Define a parameter set from which to sample

We will define a more complex design for this example. We will suppose

eight different conditions. Conditions 1 through 4 contain an accuracy

instruction and 5 through 8 contain a speed instruction. A second mani-

pulation, within these groups, again pertains to the quality of the stimulus.

This time, however, it is a continuous variable which takes the values .2 .8
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-.4 .6. The following parameter set is roughly what we would expect from

such an experiment:

parameter_set = [.24 .30 .08 .12 .02 .10 .15

.24 .30 .08 .12 .02 .10 .30

.24 .30 .08 .12 .02 .10 .00

.24 .30 .08 .12 .02 .10 .25

.08 .30 .08 .04 .02 .10 .15

.08 .30 .08 .04 .02 .10 .30

.08 .30 .08 .04 .02 .10 .00

.08 .30 .08 .04 .02 .10 .25];

Define simulation constants

Let’s say that the number of data points per condition wasn’t equal here:

N = [470 440 500 450 430 460 400 450];

seed = 0;

Simulate data

data = multisimul(parameter_set,N,seed);

disp(data(1:10,:))

6.0000 1.0000 0.3451

4.0000 1.0000 0.7723

3.0000 1.0000 1.7779

3.0000 0 0.6231

1.0000 1.0000 0.5785

1.0000 1.0000 1.3063

6.0000 1.0000 0.3371

8.0000 1.0000 0.3294

3.0000 0 1.3768

8.0000 1.0000 0.3747
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Fitting the model

Prepare the options structure

Get default options structure

options = multiestv4;

Copy it, because we want to fit more than one model

options = repmat(options,3,1);

Adapt all of the options structures at once to change some settings

We want to use a percentile-based method instead of a fixed-bins method.

(The deal function changes all fields with a given name in an array of

structures simultaneously. Note the required use of [] at the left hand

side here.)

[options.EstimationMethodScalar] = deal(6);

Setting this field to 6 indicates that we want a multinomial likelihood

estimation based on percentiles (Quantile Maximum Probability Estima-

tion). A table with possible values for EstimationMethodScalar is given in

the DMAT documentation.

Since we indicated that we want to estimate on the basis of percentiles,

we need to indicate which percentiles to use. Classically, percentiles 10, 30,

50, 70, and 90 are used, but adding some smaller values increases recovery

of the left slope of the RT distribution.

[options.Percentiles] = deal([1 2 5 10 30 50 70 90

1 2 5 10 30 50 70 90]);

We also don’t want to estimate the starting point, but want to fix it to

exactly half of boundary separation, in all conditions:

[options.SpecificBias] = deal([.5 .5 .5 .5 .5 .5 .5 .5]);
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Prepare the design matrix for each model

In Model 1, all parameters are kept equal across conditions. However, we

do need to make a change in the design matrices. Since we supplied an

extra restriction (namely that all z = a/2), we need to remove the design

matrix restriction to avoid a conflict. Thus:

options(1).DesignMatrix = ...

{’1’,’1’,’1’,[],’1’,’1’,’1’,’1’,’1’ };

options(1).Name = ’No effects’;

Note also that here we make use of two short-cuts built into the code:

supplying ’1’ instead of a design matrix restricts that parameter to be

equal across conditions. Supplying an empty matrix ([] ) allows it to vary

without restriction.

In Model 2, drift rate is allowed to vary as a linear function of the

covariate, and boundary separation is allowed to vary between the two

manipulations.

v_covariate = [.2 .8 -.4 .6 .2 .8 -.4 .6]’;

v_intercept = ones(8,1);

v_dm = [v_intercept v_covariate]

v_dm =

1.0000 0.2000

1.0000 0.8000

1.0000 -0.4000

1.0000 0.6000

1.0000 0.2000

1.0000 0.8000

1.0000 -0.4000

1.0000 0.6000

a_dm = [ones(4,1) zeros(4,1);zeros(4,1) ones(4,1)];
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options(2).DesignMatrix = ...

{a_dm,’1’,’1’,[],’1’,’1’,v_dm,’1’,’1’ };

options(2).Name = ’Linear regression’;

In Model 3, drift rate and boundary separation are allowed to vary

freely across conditions (to check for deviations from the design).

options(3).DesignMatrix = ...

{[],’1’,’1’,[],’1’,’1’,[],’1’,’1’ };

options(3).Name = ’Deviation from linearity’;

Invoke DMAT

Use the multiestv4 function to get parameter estimates

output = multiestv4(data,options);

Starting model 1 of 3: No effects

Warning: Automatically generated guess was outside

parameter space. Generating new guess.

Guess : 21129.87060030 (25-Dec-2008 20:46:39)

Simplex 1: 20325.38699337 (25-Dec-2008 20:46:59)

Simplex 2: 20269.33154165 (25-Dec-2008 20:47:31)

Simplex 3: 20269.33152623 (25-Dec-2008 20:48:06)

Simplex 4: 20269.33152623 (25-Dec-2008 20:48:40)

Final loss: 20269.33152623 (25-Dec-2008 20:48:53)

Warning: Hessian is not of full rank.

Starting model 2 of 3: Linear regression

Guess : 20269.33152623 (25-Dec-2008 20:49:01)

Simplex 1: 17346.55024075 (25-Dec-2008 20:49:24)

Simplex 2: 17322.22852869 (25-Dec-2008 20:49:43)

Simplex 3: 17322.21130713 (25-Dec-2008 20:50:04)

Simplex 4: 17322.21130712 (25-Dec-2008 20:50:33)

Final loss: 16167.60784974 (25-Dec-2008 20:51:05)

Starting model 3 of 3: Deviation from linearity
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Guess : 16167.60784974 (25-Dec-2008 20:51:09)

Simplex 1: 16155.85066211 (25-Dec-2008 20:51:24)

Simplex 2: 16155.32897820 (25-Dec-2008 20:51:40)

Simplex 3: 16155.18402990 (25-Dec-2008 20:51:56)

Simplex 4: 16152.05264367 (25-Dec-2008 20:57:56)

Final loss: 16151.98518856 (25-Dec-2008 21:00:52)

Display summary output

qtable(output)

-----------------------------------------------------------------------

Deviance d-Deviance df d-df AICc BIC p

-----------------------------------------------------------------------

20269.3315 NaN 6 NaN 20281.3549 20318.4637 NaN

16167.6078 4101.7237 8 2 16183.6479 16233.1174 0.00000

16151.9852 15.6227 20 12 16192.2199 16315.7590 0.20914

-----------------------------------------------------------------------





Bayesian

105





CHAPTER 3

A Bayesian Approach to Diffusion Process Models of

Decision-Making

Abstract

The Wiener diffusion model, and its extension to the Ratcliff diffusion mo-

del, are powerful and well developed process accounts of the time course of

human decision-making in two-choice tasks. Typically these models have

been applied using standard frequentist statistical methods for relating

model parameters to behavioral data. Although this approach has achie-

ved notable successes, we argue that the adoption of Bayesian methods

promises to broaden the scope of the psychological problems the models

can address. In a Bayesian setting, it is straightforward to include linear,

non-linear, and categorical covariates of the basic model parameters, and

so provide a much richer characterization of individual differences, the

properties of stimuli, the effects of task instructions, and a range of other

107
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important issues. In this paper, we provide an example of the Bayesian

possibilities by applying the Ratcliff diffusion model to a benchmark data

set involving a brightness discrimination task. We simultaneously use a

categorical covariate and nonlinear regression to model the psychophysical

function in a theoretically satisfying way. We also use Bayesian inference

on latent class assignment variables to identify and accommodate contami-

nant data at the level of individual trials, categorizing them as ‘diffusion’

trials, ‘guesses,’ and ‘delayed startup’ trials. Using our application as a

concrete example, we discuss the potential benefits of applying the Baye-

sian framework to process models in the cognitive sciences.

3.1 Introduction

One area of the cognitive sciences that has many formal models is that

of choice reaction time (RT), particularly when the number of choices is

restricted to two (Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006). The

practical application of many of the available models, however, has histo-

rically been hampered by computational difficulties (see e.g., Vandekerck-

hove & Tuerlinckx, 2007). This is particularly the case for one prominent

class of models based on diffusion processes, including the Wiener diffu-

sion model and its popular extension, the Ratcliff diffusion model (Ratcliff,

1978; Wagenmakers, in press).

For the latter model, several pieces of software have been published to

aid in fitting these models to data (Vandekerckhove & Tuerlinckx, 2008;

Voss & Voss, 2007). Nevertheless, the application of statistical models to

the diffusion parameters with these programs is, at present, restricted to

the application of linear constraints (such as ANOVA or polynomial re-

gression). The spectrum of possible applications of the diffusion model is

much broader than that. In this paper we employ psychophysical curve
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fitting and latent class assignments in a Bayesian1 treatment of the diffu-

sion model, as an example of how Bayesian methods can broaden the class

of psychological problems diffusion models can address.

The structure of the paper is as follows. We first describe the Wiener

and Ratcliff diffusion models as process accounts for two-choice RT. We

then report an example diffusion model analysis using Bayesian methods—

based on previously studied data relating to a brightness discrimination

task—that would be highly challenging to implement in a classical frequen-

tist context. We also demonstrate using this example that the Bayesian

approach can be successfully applied to relatively small sample sizes. Fi-

nally, we discuss the power and generality of the framework for extending

the potential of process models in the cognitive sciences.

3.2 Diffusion models

3.2.1 The Wiener diffusion model

The Wiener diffusion model as a process for speeded decisions starts from

the basic principle of accumulation of information. When an individual is

asked to make a binary choice on the basis of an available stimulus, the

assumption is that evidence from the stimulus accumulates over time and

a decision is made when an upper or lower boundary is reached. Which

boundary is reached determines which response is given, and the number

of accretion steps taken is related to the RT. The model can also be seen as

a continuous-time version of the Sequential Probability Ratio Test (SPRT;

Laming, 1968), and is used frequently in neuroscience (Smith & Ratcliff,

2004).

1We want to emphasize that we are using Bayesian methods as a framework for
statistical inference, and not as a set of theoretical assumptions about how humans
make inferences. This means we are not proposing a ‘rational’ or ‘computational-level’
model of cognition, despite our reliance on Bayesian methods of inference.
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Response "A"

Response "B"
0
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z
0

t er

Sample Path

d(t)

ξ

Figure 3.1: A graphical illustration of the diffusion model. Note that z0 = a× b.
In the Ratcliff diffusion model, b, ter, and ξ vary from trial to trial. The probability
density for a correct response given at time t is shown as d(t).

Figure 3.1 depicts the diffusion process, and shows the main parameters

of the process. On the vertical axis there are the boundary separation a,

indicating the level of evidence required to make a response (i.e., speed-

accuracy trade-off) and the starting point z0, indicating the a priori status

of the evidence counter. The arrow represents the average rate of informa-

tion uptake or drift rate ξ, which indicates the average amount of evidence

that the observer receives from the stimulus at each sampling. Finally,

the short dashed line indicates the nondecision time ter, the time used

for everything except making a decision (i.e., encoding the stimulus and

physically executing the response).

It is important to note that, considering the Bayesian statistical context

of this article, it will be more convenient to use a different parametrization

of the process. We will therefore not consider the starting point z0, but

rather use the initial bias b, defined as b = z0/a.
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3.2.2 The Ratcliff diffusion model

Despite the elegance of the basic Wiener process as an account of the time

course of decision-making, the evolution of diffusion models has involved

a series of additional assumptions. These have all been intended to ad-

dress shortcomings in the ability of the basic model to capture empirical

regularities observed in data from human decision-making experiments.

One important change has been the introduction of additional noise

processes to capture cross-over effects. ‘Cross-over effects’ refer to the ob-

servation that errors can sometimes be, on average, faster than correct

decisions, but other times are as slow or slower. These possibilities are not

accommodated by the basic model in Figure 3.1 without allowing for varia-

tion in the parameters. Accordingly, to predict fast errors, the basic model

is extended by assuming that the starting point is subject to between-trial

variation according to a Gaussian or uniform distribution. Similarly, to

predict slow errors, it is assumed that the mean drift rate is also subject

to between-trial variation according to a Gaussian distribution.

Additionally, for empirical reasons the nondecision time is assumed to

vary from trial to trial, usually according to a uniform distribution. These

three noise processes are parameterized with the standard sufficient statis-

tics (mean and variance of a Gaussian or mean and range of a uniform),

which become additional parameters of the model. When the Wiener dif-

fusion model is extended with trial-to-trial variabilities such as these, it

is often called the Ratcliff diffusion model (Wagenmakers, in press). This

extended model comes with a much greater computational burden (see

Tuerlinckx, 2004).

Notation In this paper, we will use X and T to refer to the accuracy

and RT variables, and x and t for specific instances of these variables.
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We will sometimes write T ∗ and t∗ to refer to response vectors (X,T )

and (x, t), respectively. We will use indices i (i = 1, . . . , I) and j (j =

1, . . . , J) to indicate conditions and k (k = 1, . . . ,K) for trials within

conditions. To indicate a vector, we will use a bold font, so that a is

the matrix of boundary separations, in all conditions and all trials. We

use the symbol ∼ to denote “is distributed according to,” so that t∗ijk ∼
WienerX,T (aijk, t

er
ijk, bijk, ξijk) and the proportionality symbol ∝ to denote

“is proportional to”.

3.3 Application to benchmark data

To illustrate the advantages and the potential of approaching diffusion mo-

dels from a Bayesian perspective, we revisit a benchmark data set (Ratcliff

& Rouder, 1998). We estimate five parameters of the Ratcliff diffusion

model (for simplicity, we assume an unbiased diffusion process, so that

b = 0.5) and perform a non-linear regression and a latent class assignment.

3.3.1 Data set

In the experiment by Ratcliff and Rouder (1998), there were two mani-

pulations of interest. First, there was a speed-accuracy instruction (par-

ticipants were either instructed to be fast or to be accurate) and second,

there was a manipulation of brightness. The task was a 2AFC procedure,

whereby each participant was shown a stimulus and had to judge whether

this stimulus was drawn from a ‘bright’ distribution or from a ‘dark’ dis-

tribution (the two distributions overlapped significantly, so subjects could

not be highly accurate; in total, there were 33 different levels of brightness,

‘1’ being completely dark and ‘17’ being completely ambiguous). Feedback

was given after each trial. There were three participants (labeled KR, JF,

and NH), and the experiment ran over the course of 11 days. After prepro-
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cessing2, there were a varying number of trials in each cell of the design,

but the total was around 8, 000 for each participant.

From the manipulations, we can expect two things. First, we expect

that the speed-accuracy instruction will have an effect on boundary sepa-

ration. Secondly, we expect that the brightness of the stimulus influences

the drift rate. Furthermore, it is likely that the data set will contain at

least some contaminant data, which we define as data points that are not

generated by the process of interest and are hence not completely germane

to the research question. In line with previous work, we will consider two

types of contaminants: guesses and delayed startups (Vandekerckhove &

Tuerlinckx, 2007).

3.3.2 Bayesian modeling

We implemented a Bayesian analysis of the brightness discrimination task

data using the graphical model presented in Figure 3.2. Graphical models

(see Griffiths, Kemp, & Tenenbaum, in press, and Lee, 2008, for psychologi-

cal introductions) are a convenient language for describing the probabilistic

relationship between parameters and data. In a graphical model, variables

of interest are represented by nodes in a graph, with children depending

on their parents. Circular nodes represent continuous variables, square

nodes discrete variables, shaded nodes observed variables, and unshaded

nodes unobserved variables. In addition, plates enclose parts of a graph to

denote independent replication.

An important practical advantage of adopting the graphical model for-

malism is that it allows our modeling to be implemented using WinBUGS

(Lunn, Thomas, Best, & Spiegelhalter, 2000). This makes it straightfor-

2We applied similar preprocessing as Ratcliff and Rouder, removing all trials from
the first day, the first 20 trials of the other days, and the first trial of each block. In
contrast to their analysis, we did not remove any trials based on an extreme RT.
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Figure 3.2: Graphical model representation of our Bayesian analysis of the Rat-
cliff diffusion model against the benchmark brightness discrimination data.

ward to perform full Bayesian inference computationally, using standard

MCMC methods to sample from the posterior distribution.

We now explain the graphical model in Figure 3.2, highlighting the

way in which it addresses important psychological problems, including ac-

counting for contaminants in data, relating the physical and psychological
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properties of stimulus, and allowing for trial-to-trial variability in perfor-

mance.

3.3.2.1 Latent classes

The Bayesian approach makes it easy to apply latent predictors to data.

In the model in Figure 3.2, we have assumed that there are three types of

experimental trials: (1) Diffusion trials (with probability 1−π), (2) guesses

(probability π(1−γ)), and (3) delayed startups (probability πγ). A similar

distinction was applied by Vandekerckhove and Tuerlinckx (2007). This

categorical distinction is latent because we have no direct measures of

class membership. Most powerfully, the Bayesian approach allows us to

estimate each trial’s probability of membership to each of these (mutually

exclusive) classes, so that we can identify specific trials that might be

contaminants. Class memberships are indicated by two binary variables,

pijk ∼ Bernoulli(π) and gijk ∼ Bernoulli(γ).

Applying this latent class assignment implies that we assume that three

distinct psychological processes account for the data. The first is a typical

diffusion process. The second is a diffusion process devoid of relevant infor-

mation (a guess); That is, the participant has not gained any information

from the stimulus and the response is therefore at chance level. In terms

of diffusion model parameters, this translates to the assumption that all

ξijk = 0 if pijk(1 − gijk) = 1. The third psychological process is one of

delayed startups, where trials have a different non-decision time.

3.3.2.2 The non-linear regression of drift rate

In psychophysics, it is common to perform nonlinear regression to model

the effect of stimulus dimensions on accuracy, often using a Weibull link

function. Because it seems natural that drift rates have similar asymptotic
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behavior as a function of stimulus intensity, our model applies a Weibull.

For the ith brightness condition (i = 1, . . . , 33) and jth speed/accuracy

instruction, then

vij = vlo +
(

vhi − vlo
)

×
(

1 − exp
[

− (i/vsc)v
sh
j

])

. (3.1)

Note that we allow the shape parameter vsh to be different between the

speed/accuracy conditions. This is contrary to Ratcliff and Rouder (1998),

who assumed mean drift rates to be equal for equal stimulus intensities.

3.3.2.3 Variability in performance

In order to extend the Wiener distribution to the Ratcliff diffusion model,

the graphical model in Figure 3.2 implements a mixed-model version of

the Wiener distribution. This means that, from trial to trial, some pa-

rameters are conditionally independent draws from a mixing distribution.

By conceptualizing the Ratcliff diffusion model in this way, we can avoid

the computationally intense integrals described in Tuerlinckx (2004), and

approximate the integrals using standard MCMC computational methods

used to integrate over the posterior. The simplification offered by this ap-

proach allows us to choose theoretically plausible mixing distributions, so

we choose a Gaussian mixing distribution for drift rate and a truncated

Gaussian for nondecision time.

This combination of assumptions in the graphical model can be for-
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mally stated as follows:

if pijk = 0















t∗ijk ∼ Wiener(aj , t
er
ijk, aj/2, ξijk)

ξijk ∼ N(vij , η
2)

terijk ∼ TN(0,+∞)

(

T er, (σer)2
)

if
pijk = 1

gijk = 1















t∗ijk ∼ Wiener(aj , t
ds
ijk, aj/2, ξijk)

ξijk ∼ N(vij , η
2)

terijk ∼ TN(0,+∞)

(

T ds, (σds)2
)

otherwise







t∗ijk ∼ Wiener(aj , t
er
ijk, aj/2, 0)

terijk ∼ TN(0,+∞)

(

T er, (σer)2
)

,

where N and TN stand for normal and truncated normal distributions,

respectively.

3.3.3 Results

All of our analyses are based on 40, 000 posterior samples collected after

a burn-in of 10, 000 samples. First, we investigate recovery of the model

by inspecting posterior predictive samples (we limit ourselves to data of

participant KR, but results were similar for the others). The two panels

in Figure 3.3 show the proportion of ‘bright’ responses in the data (open

circles) and as recovered by the model (grey dots; the full line connects the

mean predictions). Similarly, in Figure 3.4, we show posterior predictives

of the 10th, 30th, 50th, 70th, and 90th percentiles of each RT distribution. In

all panels, it is clear that the model recovers the patterns in the data quite

well. The exception is the 10th RT percentile in the speed condition, which

the model consistently overestimates. This may be due to our restriction

that b = .5 and does not vary from trial to trial.

Looking at the posterior means and standard deviations for the stan-

dard Ratcliff diffusion model parameters (for participant KR) in column
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Figure 3.3: Posterior predictive proportions of ‘bright’ responses, as a function
of stimulus intensity (participant KR). Grey dots indicate 100 posterior samples,
open circles indicate the proportions in the data set. Black dots at top and bottom
indicate observed data points (jittered). Thick dark lines connect the posterior
mean estimate of the response probabilities in each condition.

A of Table 3.1, we see that the boundary separation parameter a is much

smaller in the speed-instruction condition (a1 = 0.05), as expected. The

Weibull asymptote parameters, as well as the scale parameter, get sen-

sible mean posterior values. Interestingly, the shape parameter is somew-

hat different between the two instruction conditions, with steeper Weibull

functions in the speed-stress condition.

Figure 3.5 shows posterior distributions of the π, γ, and vsh, for each

participant. The difference in vshs is small in two participants, but large
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Figure 3.4: Posterior predictive RT percentiles (KR). Left panels are for the
speed-stressed condition. The first through fifth row are for the 90th, 70th, 50th,
30th, and 10th percentiles, respectively. The values of the RT quantiles are shown
on the vertical axes. Grey dots indicate 100 posterior samples, the dark lines
connect posterior means. Empirical percentiles are shown by crosses.
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Figure 3.5: Posterior density plots for parameters π, γ, and vsh
j . In the top

two panels (π and γ), line styles indicate participants (KR: dotted, JF: dashed,
NH: full). In the bottom panels, vsh

1 (dashed, for the speed condition) and vsh
2

(full line, for the accuracy condition) are shown for each participant separately.
Significant differences are visible.

for JF, and it seems consistent between participants.3

Participant KR has the highest π parameter—the posterior mean is

about .006. Looking at this participant’s γ parameter, we see that there

is much uncertainty regarding the proportion of guesses (because this pa-

rameter pertains to only .6% of the data—43 trials), but there are likely

more delayed start-ups (28) than guesses (15). The delayed start-up trials

are on average 858 ms slower than regular trials. If we compare the first

two columns in Table 3.1, it appears that accounting for contaminants in

this data set makes little difference for the mean estimates of the parame-

3The change in the Weibull shape can be interpreted as an effect of an adaptation
in the participant’s strategy. However, the present data do not allow us to speculate
further on the cause of this effect.
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ters. The posterior uncertainty of the drift-related parameters, however,

is higher in the more complicated contaminant-mixture model.

3.4 Sample size

Typically, applying the Ratcliff diffusion model requires “a fair amount

[sic] of data for accurate estimation of its parameters” (Wagenmakers, in

press). By constraining parameters across conditions and using a Baye-

sian approach with modern computational sampling methods, we expect

the need for large data sets to be alleviated. To test this possibility, we

conducted analyses based on subsampling from the benchmark data, and

comparing the results with the results from the full data set.

To subsample from the original data set, we sampled—without

replacement—either 2, 5, 10, or 20% of the data points for participant

KR; thus approximately preserving the relative number of data points in

each condition. We then applied a model that is similar to the one descri-

bed in the previous section (see Fig. 3.2), but we leave out the contaminant

modeling (π = 0) because of the low proportions of contaminants found.

We drew 5, 000 samples from the joint posterior, after a burn-in of 5, 000.

For each parameter, we compute the posterior mean. This procedure was

repeated 20 times for each proportion, with new subsamples each time.

Then, with the mean posterior estimates resulting from each of the smal-

ler data sets, we computed the squared relative bias R2 for each parameter:

R2
θ =

(

(θ − θ̂)/θ
)2

, where θ indicates the parameter as estimated from the

full data set (with the same model containing no contaminant component)

and θ̂ as estimated from the smaller data set. We summed the R2s for each

parameter set to obtain a measure of how close the recovered parameters

of each subsample were to the ones found from the full data set. From each

downsampling proportion (2, 5, 10, and 20%), we then chose the results
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that gave the median recovery under the R2 criterion, and report those

results in Table 3.1.

As can be seen, most of the estimates from the reduced data sets are

very similar to those inferred from the full data set, and they certainly

preserve all of the important order relations and trends in the parameter

values across conditions. With few data, posterior uncertainty is very large.

As expected from statistical theory, the posterior standard deviations scale

up with a factor
√

Nt/Ns, where Nt is the total sample size and Ns the

size of the subsample.

3.5 Conclusions

In this paper, we demonstrated a Bayesian extension of the popular Ratcliff

diffusion model. In a single example, we combined a psychophysical link

function and latent class assignment to revisit the benchmark data set of

Ratcliff and Rouder (1998). As part of the Bayesian method, we employed

posterior predictive checks (shown in figures 3.3 and 3.4) of the model. We

found that few of the data points are contaminants. Interestingly—and in

contrast to previous analyses—we also found differences in drift rate as an

effect of task instruction. In particular, drift rate as a function of stimu-

lus quality increases more steeply under speed-stress than it does under

accuracy-stress. In addition, we reported a simple numerical experiment

that showed that relatively small samples can yield satisfactory parame-

ter estimates. This suggests that the Ratcliff diffusion model may, using

Bayesian methods, be applied to smaller data sets than was previously

practicable.

We think many of the specific demonstrations in our example corres-

pond to general points regarding the usefulness of Bayesian statistical me-

thods for understanding process models in the cognitive sciences. At the
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Table 3.1: Some results for participant KR. Posterior means in top half; Pos-
terior standard deviations in bottom half. The rightmost column describes the
distrbitution of the R2

θ criterion for the 5% samples. R2
θ is generally small with

little variability, except for η and vsh
2 . All SDs have been multiplied by 100.

A∗ B∗ 2% 5% 10% 20% R2
θ;5%

T er 0.25 0.25 0.23 0.26 0.25 0.25 0.00
a1 0.05 0.06 0.07 0.05 0.05 0.05 0.04
a2 0.21 0.21 0.20 0.22 0.24 0.23 0.01
η 0.11 0.12 0.08 0.14 0.16 0.16 0.21
σer 0.03 0.03 0.04 0.04 0.03 0.04 0.04
vhi 0.59 0.57 0.43 0.67 0.77 0.71 0.05
vlo -0.55 -0.53 -0.63 -0.74 -0.62 -0.60 0.05
vsc 0.57 0.56 0.48 0.56 0.63 0.60 0.00
vsh1 3.02 3.07 4.89 2.39 2.20 2.75 0.05
vsh2 2.26 2.33 1.83 1.87 1.95 2.32 0.58

T er 0.14 0.14 1.11 0.73 0.42 0.34 0.17
a1 0.08 0.08 0.67 0.41 0.25 0.20 4.80
a2 0.32 0.32 2.10 1.56 1.18 0.89 2.12
η 0.69 0.66 5.07 3.40 2.18 1.83 20.66
σer 0.08 0.08 0.70 0.36 0.25 0.19 4.22
vhi 3.72 2.88 8.73 12.75 8.71 9.45 4.88
vlo 1.95 1.80 12.83 8.66 6.70 4.95 5.50
vsc 1.34 1.04 3.22 4.89 3.59 3.09 0.43
vsh1 24.84 22.80 241.43 71.83 40.83 54.36 5.78
vsh2 9.77 9.40 49.30 29.10 25.52 24.62 94.62

∗ A is with outlier treatment; B is without outlier treatment.

most general level, the Bayesian framework for scientific inference allows

enormous freedom in building process models. All that is required is a for-

mal probabilistic account of how observed data are generated. Once this

modeling has been done, and data are available, making inferences is the

(conceptually) easy process of reversing the generative process, and infer-

ring which combinations of parameters are likely to have given rise to the

data. Important issues like balancing goodness-of-fit with complexity, as-

sessing sensitivity to prior information, conditioning on nuisance variables,
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and so on, are all dealt with completely and coherently because Bayesian

inference has a principled basis in probability theory.

More practically, Bayesian methods, especially through the use of gra-

phical models or other languages that permit the use of modern com-

putational methods for posterior sampling, make it straightforward to

undertake analyses that are psychologically rich, but otherwise difficult

to implement. For example, mixture models—including especially latent

assignment models—allow data in a task to be modeled as having been

generated by more than one psychological process. Complex regression

structures are straightforward to implement and variability across trials is

easily formalized in a Bayesian account.

The ability of Bayesian methods in our example to extend the scope

of well-developed and widely-used diffusion process accounts of decision-

making is very promising. It suggests that Bayesian methods can be ap-

plied widely to process models throughout the cognitive sciences, broade-

ning the set of psychological questions these models can be used to answer.
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CHAPTER 4

Hierarchical diffusion models for two-choice response times

Abstract

Two-choice response times are a common type of data, and much research

has been devoted to the development of process models for such data. Ho-

wever, the practical application of these models is notoriously complicated

and flexible methods are largely nonexistent. We combine a popular model

for choice response times—the Wiener diffusion process—with techniques

from psychometrics in order to construct a hierarchical diffusion model.

Chief among these techniques is the application of random effects, with

which we allow for unexplained variability among participants, items, or

other experimental units. These techniques lead to a modeling framework

that is highly flexible and easy to work with. Among the many novel

models this statistical framework provides are a multilevel diffusion mo-

del, regression diffusion models, and a large family of explanatory diffusion

129
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models. We provide examples and the necessary computer code.

4.1 Introduction

In his 1957 Presidential Address before the APA Meeting, Lee Cronbach

drew a captivating sketch of the state of psychology at the time. He fo-

cused on the two distinct disciplines that existed in the field of scientific

psychology at the time. On the one side, there was the experimental disci-

pline that concerned itself with the systematic manipulation of conditions

in order to observe the consequences. On the other side, there was the

correlational discipline, which focused itself on the study of preexisting

differences between individuals or groups. Cronbach saw many potential

contributions of these disciplines to one another, and argued that the time

and opportunity had come for the two dissociated fields to crossbreed:

“We are free at last to look up from our own bedazzling treasure, to cast

properly covetous glances upon the scientific wealth of our neighbor dis-

cipline. Trading has already been resumed, with benefit to both parties”

(Cronbach, 1957, p. 675). Two decades onward, Cronbach (1975) saw the

hybrid discipline flourishing across several domains.

In the area of measurement of psychological processes, a similar schism

still exists today. Psychological measurement and individual differences

are studied in the domain of psychometrics, while cognitive processes are

the stuff of the more nomothetic mathematical psychology. In both areas,

statistical models are used extensively. There are the common models

based on the (general) linear model such as ANOVA and regression but

we will focus on more advanced, nonlinear techniques.

Experimental psychology has, for a long time, made use of pro-

cess models to describe interesting psychological phenomena in various

fields. Some famous examples are Sternberg’s (1966) Sequential Exhaus-
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tive Search Model for visual search and memory scanning, Atkinson and

Shiffrin’s (1968) Multistore Model for memory, multinomial processing tree

models for categorical responses (Batchelder & Riefer, 1999; Riefer & Bat-

chelder, 1988) and the general family of sequential sampling models for

choice response times (Laming, 1968; Link & Heath, 1975; Ratcliff &

Smith, 2004). A property shared by these process models is that they

give detailed accounts of underlying response processes. Such models are

typically applied to data from single participants, and they are very suc-

cessful in fitting empirical data.

In the correlational area, however, measurement models are dominant.

Most well-known among these is the factor analysis (FA) model, but mo-

dels from item response theory (IRT) belong to this class as well. In the

past decade, a lot of work has appeared showing the relationships bet-

ween FA, IRT, and multilevel models. Rijmen, Tuerlinckx, De Boeck, and

Kuppens (2003) show that many IRT models are generalized linear mixed

models (GLMM) and the rest are nonlinear mixed models (NLMM; see

also De Boeck & Wilson, 2004). Skrondal and Rabe-Hasketh (2004) offer

an encompassing framework for FA models, IRT models, and multilevel

models (called generalized linear latent and mixed models or GLLAMM).

The models that originated in correlational research are used to model in-

dividual differences. Often such models are less detailed and more general

than the models discussed in the previous paragraph, but they are able to

locate the main sources of individual differences.

Recently, some convergence between the experimental and the correla-

tional areas has emerged. Batchelder and Riefer (1999; see also Batchelder,

1998; Riefer, Knapp, Batchelder, Bamber, & Manifold, 2002) have intro-

duced the concept of cognitive psychometrics. In cognitive psychometrics,

models from cognitive psychology are used to capture specific interesting

aspects of the data. These models typically assume that the data have
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been gathered with a specific paradigm (e.g., that they are binary choice

response times). While this necessarily makes the models less general than

multipurpose statistical models, it provides the advantage of providing sub-

stantive insight in the data. Furthermore, ideas of hierarchical modeling

have recently been introduced into the area of cognitive modeling, most

notably by Rouder and colleagues (e.g., Rouder & Lu, 2005; Rouder, Lu,

Speckman, Sun, & Jiang, 2005; Rouder et al., 2007), who use hierarchical

models as a statistical framework for inference, and also by Tenenbaum

and colleagues (e.g., Chater, Tenenbaum, & Yuille, 2006; Griffiths, Kemp,

& Tenenbaum, 2008), who use hierarchical models as an account of the

organization of human cognition.

Extending cognitive models to hierarchical models (or vice versa) is an

important part of the trading between disciplines that Cronbach (1957)

advocated. The benefits of the trade do go both ways: By extending

process models hierarchically, experimental psychologists who use these

models can take individual differences into account and are in a better

position to explain such individual differences. Correlational psychologists,

on the other hand, could apply measurement models that are built upon

firmly validated process models, often grounded in substantive theory.

In the present paper, we aim to integrate both traditions further by

extending hierarchically an important and popular process model, the dif-

fusion model for two-choice response times. Even though choosing the

diffusion model as our measurement level bears with it a number of im-

plementation difficulties, we choose this model because of the interesting

psychological interpretability of its parameters, which we will explain in

the next section. Additionally, choice response times—the combination of

reaction time and accuracy data—are ubiquitous in experimental psycho-

logy, and we believe that a hierarchical extension of the diffusion model

could be of considerable value to the field. In addition, a Bayesian ap-
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proach is taken to fit the hierarchical extension of the diffusion model.

Details on the practical implementation will provided as well.

In the sections that follow, we will introduce diffusion model for two-

choice response times, and then provide a detailed account of the hie-

rarchical extension to the diffusion model. Then, we will describe three,

progressively more complex, example applications. We conclude with a

discussion of our approach and of further possible applications.

4.2 The diffusion model

The diffusion model as a process for speeded decisions starts from the basic

principle of accumulation of information (Laming, 1968; Link & Heath,

1975). When an individual is asked to make a binary choice on the basis

of an available stimulus, the assumption is that evidence from the stimulus

is accumulated over (continuous) time and a decision is made as soon

as an upper or lower boundary is reached. Which boundary is reached

determines which response is given. The basic form of this model is often

referred to as the Wiener diffusion model with absorbing boundaries.

Figure 4.1 depicts the Wiener diffusion process, and shows the main

parameters of the process. On the vertical axis there are the boundary

separation α,1 indicating the evidence required to make a response (i.e.,

speed-accuracy trade-off) and the initial bias β, indicating the a-priori sta-

tus of the evidence counter as a proportion of α. If β is less than 0.5, this

indicates bias for the response represented by the lower boundary. The

absolute value of the starting position is αβ = ζinit, but we will generally

not use this value. The arrow represents the average rate of information

uptake or drift rate δ, which indicates the average amount of evidence that

1Throughout, we will use Greek letters to indicate unobserved parameters and Latin
letters for running indexes or observed variables.
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the observer receives from the stimulus at each sampling. (The amount

of variability in these samples, which makes the process stochastic, is a

scaling constant that is typically set to 0.1 in the literature) Finally, the

short dashed line indicates the nondecision time τ , the time used for every-

thing except making a decision (i.e., encoding the stimulus and physically

executing the response). Probability density functions associated with the

diffusion model can be found in Appendix 4.A.

Response A

Response B
0

α

  ζ
init

=αβ

τ

Sample Path

δ

Figure 4.1: A graphical illustration of the Wiener diffusion model.

The diffusion model owes much of its current popularity to the work

of Ratcliff and colleagues (e.g., Ratcliff, 1978; Ratcliff & Rouder, 1998;

Ratcliff, Van Zandt, & McKoon, 1999; Ratcliff & Smith, 2004). An impor-

tant contribution Ratcliff made was to incorporate trial-to-trial variance

into the Wiener diffusion model, so that the parameters β, δ, and τ are

not constant but vary from trial to trial. This conceptually significant

extension has performed so remarkably well in the analysis of two-choice

response time data that it is now sometimes referred to as the Ratcliff diffu-

sion model (Vandekerckhove & Tuerlinckx, 2007; Wagenmakers, in press).

It has successfully been applied to data from experiments in many different

fields, such as memory (Ratcliff, 1978; Ratcliff & McKoon, 1988), letter
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matching (Ratcliff, 1981), lexical decision (Ratcliff, Gomez, & McKoon,

2004; Wagenmakers, Ratcliff, Gomez, & McKoon, 2007), signal detection

(Ratcliff & Rouder, 1998; Ratcliff, Thapar, & McKoon, 2001; Ratcliff et

al., 1999), visual search (Strayer & Kramer, 1994), and perceptual judg-

ment (Eastman, Stankiewicz, & Huk, 2007; Ratcliff, 2002; Ratcliff & Rou-

der, 2000; Thapar, Ratcliff, & McKoon, 2003; Voss, Rothermund, & Voss,

2004). The Ratcliff diffusion model is also one of very few models that

succeed in explaining all of the “benchmark” characteristic aspects of two-

choice response time data—such as different response time distributions

for correct and error responses, both of them positively skewed and the

relation between their means dependent on parameters, with some mini-

mum value below which there is no mass (Brown & Heathcote, in press). In

addition, the model has passed selective influence tests for its main para-

meters (Voss et al., 2004), in which experimental manipulations are shown

to affect only the relevant model parameters (e.g., changing from speed to

accuracy instructions affects only the boundary separation parameter).

4.3 A hierarchical framework for the diffusion model

4.3.1 Motivation

There are several motivations for making a hierarchical extension of a sub-

stantively generated model such as the diffusion model. The first and most

important motivation involves the type of data set to which the diffusion

model has typically been applied. Traditional applications of the diffu-

sion model have been restricted to single participants (see, e.g., Ratcliff &

Rouder, 1998), and there has generally been no motivation to model inter-

individual differences in the decision process. The dearth of investigation

into individual differences in when applying process models is reminiscent
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of the schism between the experimental and correlational subdisciplines

that Cronbach (1957, cf. supra) pointed out.

More recently, however, the diffusion model has been applied to study

individual differences (e.g., Klauer, Voss, Schmitz, & Teige-Mocigemba,

2007; Ratcliff et al., 2004; Wagenmakers et al., 2007). The typical ap-

proach in such cases is to run multi-step analyses: In a first step a specific

model is fitted to data from each individual, and then inferences regar-

ding individual differences are made on the basis of summary measures of

the parameter estimates. An example of this approach can be found in

Klauer et al. (2007), where individual participants’ parameter estimates

are subjected to second-stage analysis using analysis of variance.

However, data do not always allow for separate analyses per indivi-

dual: Estimating the diffusion model’s parameters typically requires a large

number of data points (Wagenmakers, in press) and in many experimental

contexts it may be impractical or even impossible to obtain many data

points within each participant. In particular, when studying higher-level

cognitive processes or emotions the stimulus material may simply not allow

for the generation of hundreds of trials or for presenting stimuli more than

once (e.g., Brysbaert, Van Wijnendaele, & De Deyne, 2000; Klauer et al.,

2007). Often, however, there are many participants in the sample. In cases

such as these, it is natural to be interested in individual differences but it

is impossible to analyze the data separately for each participant, and the

multi-step procedure cannot be applied.

Another problem with the multi-step procedures is that one may want

to constrain parameters to be equal across participants. In this case, an

analysis needs to involve all subjects simultaneously, allowing some of the

parameters to differ and others to be equal. However, such an approach

may lead to a prohibitively large number of parameters. As will be ar-

gued below, a hierarchical approach may offer a solution by formalizing
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individual differences in a specific process model framework.

4.3.2 Uses of the hierarchical diffusion model

In a hierarchical model, it is assumed that participants are a randomly

drawn sample from some partly specified population (see also Gelman &

Hill, 2007). Each individual participant has their own set of parameters,

and since these participants are typically randomly selected from some lar-

ger population, the differences in parameter values between participants

can be seen as a random effect in the statistical sense.2 In this way, in-

dividual differences can be explicitly permitted in a hierarchical model.

However, not only the person-specific parameters are important, but also

the unknown characteristics of their population distributions, such as the

means, variances, and covariances, the latter two of which are indications

of the magnitude (i.e., importance) of individual differences.3 In a hierar-

chical framework, it is relatively easy to construct models in which some

parameters are constrained to be equal across participants, while others

may vary from individual to individual. Hierarchical models are ideally

suited to handle the data sets with few trials per participant (discussed

above), even in the case where single individuals do not provide enough

information to estimate all model parameters. Hierarchically extending

2A random effect occurs when experimental units are randomly drawn, interchan-
geable samples from a larger population. This applies not only to participants, but may
apply to items, trials, blocks, and other units as well, as long as they are interchangeable
samples. If the selected units comprise the entirety of the relevant population (about
which we want to make inferences), then a fixed effect is appropriate.

3While it may seem that such an approach leads to even more parameters than
when no population assumptions are made, invoking the population assumption actually
reduces the number of effective parameters because it acts as a constraint on the person-
specific parameters (this effect is in some cases also called shrinkage to the mean). A
limiting case is when the variance of the population distribution is zero such that there
are no individual differences and all person-specific parameters are exactly equal to the
mean. Moreover, shrinkage is stronger for parameters of individuals that provide less
information. For more information on hierarchical modeling and shrinkage we refer to
Gelman and Hill (2007).
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the diffusion model leads to what we call the hierarchical diffusion model

(HDM).4

Hierarchical models have proven useful in many areas of research. Some

selected domains include psychological measurement where item response

models have been used (e.g., De Boeck & Wilson, 2004), educational mea-

surement and school effectiveness studies (Raudenbush & Bryk, 2002), and

longitudinal data analysis in psychology (Singer & Willett, 2003) and bio-

statistics (Molenberghs & Verbeke, 2006; Verbeke & Molenberghs, 2000).

In this paper, we rely particularly on the framework proposed by De

Boeck and Wilson (2004) for item response models. In their book, De

Boeck and Wilson (2004) sharply distinguish between describing and ex-

plaining individual differences. Describing individual differences refers to

the possibility of assuming population distributions for certain parame-

ters and estimating some characteristics of these distributions. In such an

approach, we merely acknowledge that differences between persons exist

and we quantify the variability in the population (through the variances

of the population distributions). However, in any scientific enterprize,

the ultimate goal is not to simply observe differences, but to attempt to

explain why they occur. Individual differences can be explained by rela-

ting the person-specific parameters to predictors (see below). In doing so,

we consider the variability in the population as to-be-explained, and by

including a predictor in the model, we explicitly intend to decrease this

unexplained variability.

It is important to emphasize that, while the above discussion was cen-

tered on differences between persons, an HDM can equally well be applied

to populations of items, trials, or indeed any experimental unit (including

4There is some ambiguity here about the word “model”. In one sense the diffusion
model is a process model, and the hierarchical extension is a statistical modeling tool.
It is the combination of these two aspects, however, that makes the HDM a powerful
framework.
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subgroups within populations, or items nested in conditions). Variability

across these other experimental units can be captured in exactly the same

way as variability across persons. The example applications will make

extensive use of this ability of HDMs.

The main difference between the approach of De Boeck and Wilson

(2004) and our framework is that De Boeck and Wilson work within a

context of item response models: The data they consider are binary (or

polytomous) responses of persons to a set of items. These item response

models are logistic regression models or extensions and generalizations the-

reof that relate the responses (or more correctly: the probability of a cer-

tain response) to an underlying latent trait (i.e., the individual difference

variable). There, the logistic regression model can be considered as the

measurement model. In our case, the data are bivariate (choice response

and reaction time) and the measurement level is the Wiener diffusion mo-

del which is considerably more complex.

In the remainder of this section, we will further elaborate and apply the

framework of De Boeck and Wilson (2004) to the diffusion model. This will

be done by defining several basic building blocks that may be combined

with the diffusion model in order to arrive at a hierarchical diffusion model

capable of describing and explaining interindividual differences. As it turns

out, not only interindividual differences may be tackled in such a way but

other sources of variation as well. Before doing so, however, we will define

some notation.

4.3.3 Notation

Suppose a person p (with p = 1, . . . , P ) is observed in condition i (with

i = 1, . . . , I) on trial j (with j = 1, . . . , J) and their choice responses (cor-

responding to the absorbing boundaries) and response times are recorded,
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denoted by the random variables X(pij) and T(pij), respectively (realiza-

tions of these random variables are x(pij) and t(pij)). We will sometimes

write Y (pij) and y(pij) to refer to the random vector (X(pij), T(pij)) and the

vector of realizations (x(pij), t(pij)), respectively. It will be said that Y (pij)

is distributed according to a Wiener distribution:

Y (pij) ∼W
(

α(pij), β(pij), τ(pij), δ(pij)
)

.

We use “Wiener distribution” as shorthand for the joint density function

of hitting the boundary X(pij) at time T(pij). The distribution is charac-

terized by four basic parameters (explained above in the section of the

diffusion model) which here carry a triple index which means that, in prin-

ciple, they can differ across persons, conditions and trials. In some of the

examples, we will add additional indexes to allow more nuanced differences.

To avoid confusion with other subscripts, indexes are always put between

parentheses.

Finally, it should be noted that we will often “recycle” symbols for

new models or new examples, so that a symbol used in one model may be

redefined in another model to refer to something else.

4.3.4 Model building blocks

Based on the framework of De Boeck and Wilson (2004), we discern three

types of useful model building blocks: levels of random variation, manifest

predictors, and latent predictors. These three aspects will be discussed in

turn. In order to render the discussion more concrete, we will illustrate the

theoretical concepts with the drift rate parameter of the diffusion model.

We choose to limit the illustrations to a single parameter for reasons of

clarity but a similar story can be told for the other parameters, as will

become obvious when we move to the applications later in the paper.
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4.3.4.1 Levels of random variation

The data may consist of different levels of hierarchy. We have already

implicitly referred to the simplest case when talking about individual dif-

ferences: Individual differences can only be investigated when a sample of

individuals is measured repeatedly. In such a case, the data consist of two

levels: At the higher level there are the individuals and at the lower level,

the measurements within the persons.

As an example, consider drift rate δ(pij). Assume that a set of persons

are presented with a series of stimuli in a single condition (such that we

may drop the index i). The drift rate δ(pj) can then be written as follows:

δ(pj) = ν(p) + ε(pj) (4.1)

where ε(pj) ∼ N
(

0, η2
ε

)

and ν(p) ∼ N
(

µν , σ
2
ν

)

, with ε(pj) and ν(p) in-

dependent. Here, the variance η2
ε represents trial-to-trial variability in

drift rate within a person. This example is akin to the assumption of

trial-to-trial variability made by (Ratcliff, 1978). The parameter µν is

the population average of individual drift rates and σ2
ν is the variance

of individual drift rates in the population. The importance of individual

differences can be judged by comparing σ2
ν to η2

ε : If σ2
ν is much larger

than η2
ε , this means that there are sizeable individual differences, which is

not the case if σ2
ν is much smaller than η2

ε . There exist several alterna-

tive ways of writing the model in Equation 4.1. For instance, one could

include the population average µν directly into the linear decomposition

(i.e., δ(pj) = µν + σνν(p) + ηεε(pj)) and assuming a mean of zero and unit

variance for all distributions.

Equation 4.1 can be extended readily to include fixed condition effects

as follows:

δ(pij) = γ(i) + ν(p) + ε(pij) (4.2)
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where γ(i) is a fixed condition effect. Hence, the mean drift rate in condition

i for a person p depends on a fixed condition effect γ(i) and a random person

effect ν(p). A related model has been proposed earlier by Ratcliff (1985)

and Tuerlinckx and De Boeck (2005).

Because individual differences are the main motivation for developing

a hierarchical diffusion model, we have thus far restricted the hierarchical

structure to trials nested within persons (conditions are viewed as fixed

effects). However, there is no reason to stop there if there is a sound

reason for more complex forms of levels of random variation. For example,

persons may be nested in groups and those groups nested in larger groups.

In such a case, there are more than the traditional two levels in the data.

In addition, there is no reason to allow random effects only at the

person side. At the condition or item side, it can make sense to allow

for condition or random effects. In the types of applications we envision

for the HDM, the stimulus material often consists of words or pictures.

In psycholinguistics, for example, there has been some controversy over

the modeling of word effects. In a seminal paper, Clark (1973) strongly

argued that stimulus words should be considered as randomly sampled

from a population distribution as well. In such cases, the parameter γ(i)

in Equation 4.2 can also be assumed to follow a normal distribution with

mean µγ and variance σ2
γ . This would yield a crossed random effects design

(e.g., Gonzalez, Tuerlinckx, & De Boeck, in press; Janssen, Tuerlinckx,

Meulders, & De Boeck, 2000; Rouder et al., 2007). Similarly, conditions

or items could be nested in categories which are in turn nested in larger

categories.
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4.3.4.2 Manifest predictors

By identifying and including levels of variation in the analyses, we des-

cribe individual differences or, if there are random item effects, differences

between stimuli. We call this type of analysis descriptive because we are

merely observing how the variability in the data is distributed among se-

veral sources. However, in a next step we want to explain the variability

in parameters by using manifest predictors (continuous and/or discrete).

More broadly, interindividual, interstimulus or, less intuitively, intertrial

variability (represented in random effects and their population variances)

might be explained by regressing basic parameters on known predictors or

covariates.

As an example of explaining interindividual variability, assume that

the drift rate is person-specific and that there is a person covariate such as

age available (with A(p) being the age of person p). We could then adopt

the following model for the drift rate:

δ(pij) = γ(i) + β0 + β1A(p) + ν(p) + ε(pij) (4.3)

where β0 and β1 are the regression coefficients of the simple linear regres-

sion of δ(pij) on A(p) and ν(p) is a person-specific error term with distribu-

tion ν(p) ∼ N
(

0, σ2
ν

)

. The other parameters are defined as in Equation 4.2.

Alternatively, we may try to use covariates in order to explain some of

the variability between items. For example, differences in recognizability

between words may be related to their frequency of use.

In sum, working with manifest predictors in the hierarchical diffusion

model means building a regression model for a random effect with known

predictors but unknown regression coefficients. Explaining variability in

parameters through covariates will be an important theme in several of the

examples in this paper.
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4.3.4.3 Latent predictors

As shown by De Boeck and Wilson (2004), predictors do not necessarily

need to be manifest; they may also be latent. That is, they are unobserved

but inferred from the data. For a simple example, take a binary predictor

that we will assume to be observed for the moment. Given this predictor,

drift rate could be decomposed as follows

δ(pij) = γ(i) + β0 + β1Z(p) + ν(p) + ε(pij), (4.4)

where Z(p) is 0 for some persons and 1 for the others. Because Z(p) is a

binary predictor, for a person p whose Z(p) = 0, drift rate equals δ(pij) =

γ(i) + β0 + ν(p) + ε(pij), but for a person p whose Z(p) = 1, the drift rate

becomes δ(pij) = γ(i) + (β0 + β1) + ν(p) + ε(pij). Assume now that Z(p) is

actually latent instead of observed, and that its distribution is Bernoulli

with success probability π (i.e., P
(

Z(p) = 1
)

= π). In this case we have

defined a two-component mixture model for drift rate. The drift rate of a

person p on trial j in condition i is then distributed as follows

δ(pij) ∼ (1 − π)N
(

γ(i) + β0, η
2
ε + σ2

ν

)

+ πN
(

γ(i) + β0 + β1, η
2
ε + σ2

ν

)

The variances of both components are equal, but their means differ by

a quantity β1, which is to be estimated from the data.

A mixture model for the diffusion model parameters may be used to

detect hidden groups or subpopulations in the data. For instance, one

may hypothesize that in a certain experiment, different people use different

strategies to respond to the stimuli. In such a case, a mixture model may

be of help in finding out whether there are really two groups and how much

they differ. Of course, the difference between the subpopulations need not

be restricted to one parameter. The groups could, for example, differ in
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drift rate and nondecision time as well.

Finally, latent predictors can also be continuous. In the model for

drift rate as proposed in Equation 4.2, there is a single person random

effect involved: ν(p). This means that for all trials and in all conditions,

the persons may be located on a continuous dimension and that these

locations remain the same for all trials and conditions (i.e., that the person

component is constant and independent of conditions or items). However,

it could be the case that in a given experiment two (or more) dimensions

of information processing are required and some conditions rely more on

one dimension and other conditions more on the other dimension. Such a

model for drift rate can be expressed as:

δ(pij) = γ(i) + λ(i)1ν(p)1 + λ(i)2ν(p)2 + ε(pij),

where λ(i)1 and λ(i)2 are the loadings of the underlying dimensions in

condition i and ν(p)1 and ν(p)2 are the positions of person p on the two

dimensions. Such a model can be called a factor analysis diffusion mo-

del. However, we will not discuss such models further because they rapidly

become very complex and estimating their parameters is computationally

very intensive (at least, using current standard approaches for computa-

tional Bayesian inference).

4.4 Statistical inference for HDMs

In the practical application of the HDM framework, statistical inference

will be performed using Bayesian statistical methods (see e.g., Gelman,

Carlin, Stern, & Rubin, 2004). In this section, we provide some back-

ground of Bayesian methods that is required for interpreting the results of

our analyses, as well as for the application of our software. We believe this
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background to be important because, while the philosophy behind Bayesian

statistics is fairly straightforward and easy to explain, the computational

techniques involved are not. As a result, output from a Bayesian compu-

tational analysis must be checked with care before it is interpreted. First,

however, we will detail why we have chosen this particular framework for

implementing the HDM.

4.4.1 Motivation for the Bayesian statistical framework

Several reasons motivate our choice to use Bayesian inference. The Baye-

sian framework has many inherent advantages, such as the principled,

consistent, and intuitive treatment of uncertainty concerning the para-

meters of the model. However, there are several advantages specific to the

topic of the present paper. Bayesian methods are most suited for flexible

implementation of hierarchical models in particular (see also Gelman &

Hill, 2007).

The diffusion model in itself, without any hierarchical extension, is al-

ready a computationally difficult model (see e.g., Tuerlinckx, 2004; Navarro

& Fuss, 2008). These difficulties are exacerbated by even small increases

in the hierarchical structure of the model (Ratcliff & Tuerlinckx, 2002;

Tuerlinckx, 2004; Vandekerckhove & Tuerlinckx, 2007). Models with more

extensive hierarchical structures (as discussed here) are often more interes-

ting, but rapidly become computationally intractable in the classical sta-

tistical framework where parameters have to be estimated using maximum

likelihood methods. Take for example a crossed random effects model for

drift rate (a random effect of person and of item), and assume for simpli-

city that the other parameters are kept constant across persons and items.

When applying such a relatively simple model to a data set of P persons

and I items, we are confronted with a likelihood function that contains
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an integral of dimension P + I. If P and I are both around 100, this

means that a 200-dimensional intractable integral has to be approximated

by standard numerical integration techniques, which is computationally

prohibitive.

4.4.2 Computation in the Bayesian framework

Bayesian methods depend on the computation of the posterior distribution

of model parameters. That is, the probability distribution of the parame-

ters, given the data. The posterior distribution can be obtained through

Bayes’ rule:

p(θ|y) =
p(y|θ)p(θ)
p(y)

where y and θ is a generic notation to refer to all the data and all the para-

meters, respectively, p(y|θ) is the likelihood, p(θ) is the prior distribution

on the parameters and p(y) is the marginal probability of the data.

Typically, however, these distributions are mathematically complex

and it is nontrivial to compute summary statistics of the (often high-

dimensional) posterior p(θ|y). In many cases it is comparatively much

easier to generate randomly drawn samples from this posterior distribu-

tion. Summary statistics of a sufficiently large sample can then be used

to accurately represent the posterior distribution. A class of general me-

thods for sampling from a complex distribution are Markov chain Monte

Carlo (MCMC; Robert & Casella, 2003) techniques and in particular the

Metropolis-Hastings algorithm, in which samples are drawn from some ini-

tial distribution that is not the posterior, and this initial distribution is

changed as successive samples are drawn in such a way that after a number

of iterations the samples draws are truly samples from the posterior.

Importantly, this means that the first samples are not representative

of the posterior distribution. That is, the convergence of the MCMC al-
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gorithm to a stationary distribution is not immediate, and may in fact

take some time. It is therefore necessary to check whether convergence

has occurred before the output of the algorithm may be considered to be

draws from the posterior distribution. Our preferred method of assessing

convergence is to run a small number of different chains (say, six). After

discarding a certain number of iterations, called the burn-in, we test whe-

ther the remaining draws from the different chains are in fact draws from

the same distribution. For this, we use the R̂ criterion (Robert & Casella,

2003), a statistic that is similar to the F statistic in analysis of variance.

R̂ is large if the between-chain variance is larger than within-chain va-

riance, and it approaches unity when the different chains have converged

to the same distribution. R̂ values lower than 1.1 are typically considered

satisfactory. In our applications, we always ran six independent chains

and obtained R̂ values under 1.05 for all parameters. In the reports of our

practical examples, we will always make brief notes regarding the techni-

cal results (because we believe this is good practice), even though they

indicated good convergence and stable estimates in each of the analyses.

4.4.3 Priors

A final technical matter is the choice of prior distributions which are requi-

red for the computation of the posterior distributions. Choice of priors is

a somewhat controversial topic in statistics, mainly because they seem to

require a somewhat subjective judgment on the part of the researcher. It is

also a matter of debate whether it is possible (and desirable) to construct

prior distributions that are entirely uninformative. For our purposes, we

have struck a simple compromise: we selected theoretically informed limits

on the possible range of each parameter, and chose a prior distribution that

reflected equiprobability of all values in that range (i.e., a uniform or “flat”
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prior). Researchers who have more prior information regarding the distri-

bution of parameters can implement this in our software easily. In practice,

however, the influence of even quite informative prior distributions on the

posterior distributions is small compared to the weight of the likelihood of

the data.

4.4.4 Graphical models

The advanced sampling algorithms described above are implemented in

the freely available statistical software package WinBUGS (Lunn, Thomas,

Best, & Spiegelhalter, 2000). WinBUGS can also be used very easily to ap-

ply a HDM (see Appendix 4.A for more detail). In order to use WinBUGS,

however, it is necessary to translate the hierarchical model into a directed

acyclical graph or graphical model. Graphical models (see Griffiths et al.,

2008 and Lee, 2008 for accessible introductions) are a convenient forma-

lism for describing the probabilistic relationships between parameters and

data. In a graphical model, variables of interest are represented by nodes

in a directed graph, with children depending on their parents. Circular

nodes represent continuous variables, square nodes discrete variables, sha-

ded nodes observed variables, and unshaded nodes unobserved variables.

In addition, plates enclose parts of a graph to denote independent replica-

tions. An example of a simple graphical model is given in Figure 4.2.

As soon as a model has been translated into a graphical model, it can

be implemented in WinBUGS and it becomes straightforward to perform

full Bayesian inference computationally, using standard MCMC methods

to sample from the posterior distribution.
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y(ij)

α

β

τ
δ(ij)

ην(i)

i = 1, . . . , I

j = 1, . . . , J

Figure 4.2: An example graphical model. The shaded node y(pij) indicates the
(bivariate) data. Nodes α, β, τ , and δ(ij) are parameters of the distribution of
y(pij). In turn, ν(i) and η are parameters of the distribution of δ(ij).

4.4.5 Evaluating model performance in the Bayesian framework

After the posterior distributions of all parameters have been found, two

aspects of model performance can ascertained. To determine relative model

fit across a series of models, the DIC measure (Gelman et al., 2004) can

be computed. This statistic, the deviance information criterion, can be

considered as a Bayesian alternative to the Akaike information criterion

(AIC). Like the AIC, the DIC also expresses a balance between the model

fit and its complexity. Lower DICs are better.

In order to determine absolute model fit, however, we might apply

posterior predictive checks (PPC; Gelman et al., 2004). The simplest

type of PPC involves defining an interesting test statistic G(·) on the

data, and computing those statistics for the observed data (i.e., G(yobs)).

Then the same statistic G(·) can be computed on a large number (say,

1, 000) of data sets that are generated from the model, leading to a set

G(yrep 1), . . . , G(yrep 1000). Finally, the position of G(yobs) in the distribu-

tion of G(yrep 1), . . . , G(yrep 1000) then indicates the viability of the model
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with regard to the data. A more complex type of PPC can be defined

as well (such that the test statistic is not pivotal, but also depends on

the parameters). However, this type of test statistic requires a (very time-

consuming) re-estimation of the model parameters for each replicated data

set, which is why we do not apply it.

4.5 Application examples

To illustrate the usefulness of the HDM framework, we now apply it to

three data sets with widely different designs, but all three of which seem

usefully dealt with using HDMs. In the first application, we will apply a

series of HDMs to a “benchmark” data set concerning contrast perception,

and apply mainly regression-type analyses, as well as trial-to-trial variabi-

lity in drift rate, initial bias, and nondecision time. We will also include

a very simple hierarchical structure, namely the addition of random va-

riability over conditions. Note that in this example, we will not consider

individual differences or complex hierarchical structures. We will use the

first application mainly to demonstrate the basic features of the diffusion

model, the Bayesian modeling approach, the principles of Bayesian mo-

del selection, and the relative ease with which these otherwise involved

analyses can be performed.

In the second application, which concerns lexical decision data, we will

apply a random effect of lexical items and add a learning curve to the

model. We will show that an HDM can easily capture a learning trend

in addition to allowing inter-item variability (part 1 of the application).

Continuing with the same data set, we will also use information from an

item covariate to explain the variability in items (part 2). However, it will

turn out that the covariate we selected does not explain the differences

well.



152 Chapter 4

In the third and final application, we again use a data set from a

psychophysical experiment. This data set is different because it has more

participants (n = 9), and we will construct an HDM that permits the

simultaneous analysis of data from different individuals. Thanks in part

to the Bayesian framework, we are able to define a statistic that directly

quantifies the effect under consideration, and estimate the distribution of

its size in the population.

In each of the examples, we will make a large number of assumptions

regarding the structure in the data. We will, sometimes somewhat arbi-

trarily, select whether certain parameters are allowed to change between

experimental units, whether effects are fixed or random, and which para-

metric forms are taken by population distributions or regression functions.

These assumptions will often be debatable, but the central point to be

made is that a wide variety of assumptions can be made explicit in the

HDM framework with relative ease. For the purposes of illustrating this,

it is not of crucial importance exactly which assumptions are made.

4.5.1 Example 1: Fixed effects and nonlinear regression

4.5.1.1 Introduction

The first application example involves a data set in a contrast discrimina-

tion task that has become something of a benchmark for RT model fitting

(Ratcliff & Rouder, 1998, data used with permission). An important rea-

son for this is that these data clearly show the standard RT phenomena

for which any model of choice RT should be able to account (Brown &

Heathcote, in press). In the experiment, three participants saw ten blocks

of trials (after two practice blocks). Each trial consisted of a grid with 75%

grey pixels and the remaining 25% either black or white. There were 33

different proportions of black versus white pixels (evenly spaced, so that
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the middle level is 50% black, 50% white), and the task was to determine

whether this proportion was a draw from a ’bright’ or a from ’dark’ dis-

tribution. Additionally, in half of the blocks, the participants were asked

to respond as accurately as possible (accuracy condition; AC), and in the

other half to be as fast as possible (speed condition; SC).

The research goal in this study was to study the relationship between

stimulus brightness and drift rate. A link was clearly confirmed, and it was

found that this link was nonlinear in nature. Here, we will go two steps

further. First, we will formalize the nonlinear relation using a cumulative

Weibull link function, which is a nonlinear function that is common in

the vision literature (see, e.g., Wichmann & Hill, 2001). Then we will

investigate the effect of the instruction (AC vs SC) on the relation between

stimulus brightness and drift rate—as it could be hypothesized that a task

instruction affects the amount of ’noise’ in the decision making system,

which would show itself in a different shape of the link function. We will

focus on a single participant’s data.

4.5.1.2 Models

As an introductory example, we apply a simple HDM to these data. Ho-

wever, the features added to the Wiener diffusion are not limited to the

trial-to-trial variance used by Ratcliff and Rouder: We also implement a

nonlinear regression and allow a difference between the instruction condi-

tions. Specifically, let C(s) = s/32 (s = 0, . . . , 32) be a measure of intensity

(i.e., brightness) and i (i = 1 for AC; i = 2 for SC) the instruction condi-

tion. Considering only one participant (so that we can drop the index p),

we have the following model for the observed response vector Y (sij):

Y (sij) ∼W
(

α(sij), β(sij), τ(sij), δ(sij)
)

.
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We will assume that the parameter α was subject only to a fixed effect of

instruction:

α(sij) = α(i),

whereas β, τ , and δ are subject to random effects of trial:

β(sij) ∼ U
(

πlo(i), π
hi
(i)

)

;

τ(sij) ∼ N
(

θ, χ2
)

;

δ(sij) ∼ N
(

ν(si), η
2
)

.

The mean of the trial-to-trial distribution of δ is additionally subject to a

random condition effect:

ν(si) ∼ N
(

µ, σ2
ε

)

,

introducing a key ability of the HDM. Here it becomes most clear why

these models are called hierarchical, because ’layers’ of randomness are

added incrementally (in this case, one at the condition level and one at

the trial level). The model with this set of assumptions will be called

“Model BM1”. Note that model BM1, while acknowledging the possibility

of difference between the 66 drift rates, contains no information to quantify

the differences between the conditions.

However, we can define multiple competing models. Ratcliff and Rou-

der’s model did not restrict the across-condition drift rate distributions.5

In contrast, we now define a second model in which we formalize the

5Ratcliff and Rouder do mention that they could (in principle) further simplify
the model by implementing a regression of mean drift rate as a linear function of
the probability that the stimulus was a draw from the ’bright’ distribution, i.e.,
ν(ps) = ζ(p)0+ζ(p)1P(s), with P(s) = N (s|κ1, φ) / [N (s|κ1, φ) + N (s|κ2, φ)] and κ1 = 5/8,
κ2 = 3/8, and φ = 3/16. However, they did not actually apply this regression.



4.5 Application examples 155

y(sij)α(i)

β(sij)

τ(sij)

δ(sij)

ν(si) σε

µ

πlo(i)

πhi(i)

χ

θ

j = 1, . . . , n(sij)

s = 0, . . . , 32

i = 1, 2
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(b) Model BM2
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(c) Model BM3

Figure 4.3: A graphical model representation of each of the models for the first
application.

connection between stimulus intensity and drift rate with a Weibull link.

Formally, redefine

ν(si) = νlo +
(

νhi − νlo
){

1 − exp
[

−
(

C(s)/ν
sc
)νsh

]}

+ ε(si),

with the error term ε(si) ∼ N
(

0, σ2
ε

)

. Note that while σ2
ε in BM1 indica-

ted the across-condition variability in ν(si), here it refers to the residual



156 Chapter 4

variability after accounting for the effect of the brightness condition. Im-

portantly, the ability to quantify residual variability after controlling for

the effect of the brightness condition allows us to investigate the magnitude

of inter-stimulus variability that is not due to an experimental manipula-

tion (but rather due to other manipulations or due to random, uncontrolled

differences between stimuli). The second model, now completely specified,

will be called “Model BM2”.

However, we had originally set out to investigate the effect of the ex-

perimental instruction on the drift rates. Let us construct a third model

in which we allow a difference in the drift rate distributions as a function

of the instruction condition, using the link function

ν(si) = νlo(i) +
(

νhi(i) − νlo(i)

)

{

1 − exp

[

−
(

C(s)/ν
sc
(i)

)νsh
(i)

]}

+ ε(si),

Note that we have added subscripts i to the Weibull’s parameters, to in-

dicate their dependence on the instruction condition. This will be Model

BM3. The three models are displayed as graphical models in Figure 4.3.

4.5.1.3 Results—technical

We drew samples from the posterior distribution using the software descri-

bed in Appendix 4.A. We ran six independent chains of 10, 000 iterations,

and 5, 000 of these iterations were discarded as burn-in. We computed the

R̂ statistic for each parameter and confirmed that they were all lower than

1.05, indicating good convergence of the chains. Visual inspection of the

chains indicates no issues (see Figure 4.4 for an example).

4.5.1.4 Results—substantive

The means and standard deviations of the marginal posteriors for some of

the parameters in each model are given in Table 4.1. Several results are im-
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Figure 4.4: An example of a sample chain. The parameter depicted is σε, the
condition-level variability, in BM1. While the chain looks well-mixed in the right
panel, the left panel shows that the first few iterations are still distinctly overdis-
persed. However, since this overdispersion quickly dissipates and is comfortably
within the burn-in zone, it does not affect the quality of the sampling.

mediately obvious. Firstly, the parameters αAC and αSC are very different:

the boundary separation in the SC is much lower than in the AC, in all

models. This is consistent with the interpretation of that parameter. Se-

condly, the posterior standard deviations are generally small compared to

the posterior means (EAPs), indicating narrow distributions and therefore

reliable estimates. Finally, the parameter σε that indicates the amount

of unexplained varibility in drift rates strongly differs between models—

apparently, the added covariates do explain a fair amount of variance.

We can use the difference in unexplained stimulus variance as a quality

measure of the Weibull regression, using a statistic akin to the familiar

statistic R2 = 1 −
(

σres

σtotal

)2
, where in this case σtotal is σε in BM1, and

σres is σε in the model with which we want to compare. Given a series

of samples from each of these parameters, we can compute a posterior

mean for the proportion of variance that is explained by the addition of

the nonlinear regressions.6 In BM2, the proportion of variance explained

6Since we are not dealing with a linear model, and are in fact comparing across
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Table 4.1: Some parameter estimates for the first application. Posterior standard
deviations have been multiplied by 100.

EAP (100x) STD

parameter BM1 BM2 BM3 BM1 BM2 BM3

αAC 0.2192 0.2314 0.2199 0.4344 0.5465 0.4507
αSC 0.0501 0.0511 0.0502 0.0984 0.0956 0.0990
θ 0.2791 0.2769 0.2789 0.1758 0.1726 0.1779
χ 0.0412 0.0404 0.0410 0.0934 0.0917 0.0937
η 0.1261 0.1425 0.1273 0.7848 0.8903 0.7960
πloAC 0.3522 0.3431 0.3515 0.9947 0.9402 1.0429
πhiAC 0.5755 0.5832 0.5757 0.8259 0.6975 0.8218
πloSC 0.4498 0.4492 0.4495 0.9888 1.0170 0.9984
πhiSC 0.4779 0.4771 0.4776 0.9670 0.9835 0.9865
σε 0.4008 0.0732 0.0064 3.8249 1.1022 0.4323

is 96.50%, while in BM3 it is as high as 99.96%.

In Table 4.2, the parameters of the Weibull regression are shown for

BM2 and BM3. It is clear from the posterior means and standard devia-

tions that the Weibull regression function is quite different between the

two instruction conditions. In particular, the upper and lower asymptotes

are more extreme in the SC, and the function is somewhat steeper in that

condition as well. In fact, according to the analysis, P
(

νshSC > νshAC

)

≈ .9590.

To compare the performance of the three models, we computed DIC

values for each model and found that BM3 performed best (DIC was

−13373.40, -12087.60, and −9642.63, for BM1, BM2, and BM3, respec-

tively).

models with strongly different assumptions, the R2 statistic used here is not exactly the
same as the familiar statistic. However, for the purpose of comparing model fits, we
believe it is a succinct summary measure.



4.5 Application examples 159

Table 4.2: Parameter estimates of the Weibull regression in the first application.
Posterior standard deviations have been multiplied by 100. Note that BM2 does not
allow for differences between the accuracy condition (AC) and the speed condition
(SC)

EAP (100x) STD

parameter BM2 BM3 BM2 BM3

νhiAC 0.4132 0.3292 2.2774 1.4160
νhiSC 0.4132 0.5110 2.2774 2.5016
νloAC -0.4296 -0.3516 2.4513 1.4473
νloSC -0.4296 -0.5654 2.4513 2.7277
νscAC 0.5258 0.5259 1.0179 0.5080
νscSC 0.5258 0.5214 1.0179 0.6037
νshAC 5.4092 4.4127 70.6052 24.1439
νshSC 5.4092 5.2268 70.6052 42.4271

4.5.1.5 Conclusion

While the model we have applied to these data is quite different from the

one used by Ratcliff and Rouder (1998), our conclusions generally echo

theirs, with one significant difference: We find an effect of instruction on

drift rate. The Weibull link functions are manifestly different between

the instruction conditions—evidently the rate of information accumula-

tion (i.e., the amount of noise in the system) is not independent of the

participants’ motivations. While we do not describe them here, the results

were analogous for the other two participants.

In addition to the relative ease with which it was applied (only 30 or so

lines of highly redundant WinBUGS code; see Appendix 4.B), the above

model contains two properties that are fundamentally novel in the domain.

Trial-to-trial variance and constraints on parameters have already been

applied (e.g., by Vandekerckhove & Tuerlinckx, 2007), but the application

of Bayesian inference and in particular the addition of random effects on

the condition (stimulus) level are new. Random effects are an important
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modeling construct that has not previously been considered in this context.

In the next example, we will focus more closely on the addition of random

effects.

4.5.2 Example 2, part 1: Nonlinear regression and random item-domain

effects

4.5.2.1 Introduction

The second example application involves data collected within a lexical

decision task paradigm, whereby participants are shown a stimulus and

have to decide whether it is a word or a non-word (Dutilh, Vandekerckhove,

Tuerlinckx, & Wagenmakers, 2008, data used with permission). Each of

the four participants was presented with 200 words and 200 word-like (i.e.,

pronounceable) nonwords in each of 25 blocks, spread over 5 days, for a

total of 10, 000 trials per person. Two participants (S1 and S2) were given

a speed instruction and two were given an accuracy instruction (A1 and

A2). We will again focus on one participant: A2.

Importantly, each stimulus was repeated 25 times for each participant

(five times per day). With the repeated measurements in this example,

we can try to separate variability due to the item’s characteristics from

trial-to-trial variability. In order to do so, we will construct an HDM with

random item effects.

The original goal of the data collection had been to investigate the

effect of practice on task performance with a diffusion model in order to

“locate” the practice effect. Accordingly, the modeling should allow for

different process parameters on different days.
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4.5.2.2 Models

We construct HDMs with random stimulus effects and flexible trial-to-

trial variability. This will increase the conceptual complexity of the model

somewhat. We will use the following subscripts: d (d = 1, . . . , 5) for

days, w (w = 1 for nonwords, w = 2 for words) for stimulus category,

s (s = 1, . . . , n(w); with n(w=1) = n(w=2) = 200) for different stimuli, and j

(j = 1, . . . , 25) for repeated presentations of identical stimuli (i.e., trials).

Note that stimuli s are nested within categories w. For the present analysis,

we have elected to work with a temporal resolution of one day. However,

nothing stops us in principle from using smaller temporal resolutions such

as one block, or even smaller groupings of trials.

The random item effects are expressed in the drift rate. We will express

drift rate as follows:

δ(wsjd) ∼ N
(

ν(wsd), η
2
)

,

ν(wsd) = γ(ws) + λ(wj),

γ(ws) ∼ N
(

µγ(w), σ
2
γ(w)

)

,

and

λ(wd) ∼ N
(

µλ(w), σ
2
λ(w)

)

.

where the parameters λ(wd) and γ(ws) express a random effect of day

and of item, respectively. Note that we allow both the day and item effect

distributions to differ between words and nonwords. As an identifiability

constraint, µγ(w) = 0 for all w.7 The α and β parameters are subject only

7We are required to restrict the value of µγ(w), because it is in a trade-off relationship
with the values of the fixed day effect. That is, we could add any number to µγ(w) and
subtract the same number from µλ(w) and obtain the same model predictions.
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to random effects of day:

α(d) ∼ N
(

µα, σ
2
α

)

and

β(d) ∼ N
(

µβ, σ
2
β

)

.

The τ parameters are subject to trial-to-trial variability:

τ(wsjd) ∼ N
(

θ(d), χ
2
)

,

with the mean nondecision time θ(d) again depending only on a random

effect of day:

θ(d) ∼ N
(

µθ, σ
2
θ

)

.

Trial-to-trial variability in nondecision time is considered to be constant

over days. We will call this the descriptive learning model (DLM).

The DLM does not address the effect of practice. In order to paramete-

rize this effect, we can apply an exponential learning curve as a constraint

onto the process parameters. Formally, in the case of the boundary sepa-

ration parameter,

α(d) = ψ0 + eψ1+ψ2d + ε(d)

with ε ∼ N
(

0, σ2
α

)

. Equivalently, we could say that the “noiseless” mo-

del prediction of α(d) is α̂(d) = ψ0 + eψ1+ψ2d, so that α(d) ∼ N
(

α̂(d), σ
2
α

)

.

The story is slightly more complex for the nondecision time τ , where trial-

to-trial variance (χ2) is combined with the exponential learning curve.

On the trial level, τ(wsjd) ∼ N
(

θ(d), χ
2
)

, whereas on the day level,

θ(d) ∼ N
(

ζ0 + eζ1+ζ2d, σ2
θ

)

. The nondecision time distribution (θ(d)) is

now expressed as a parametric function of day. Note that this formulation

allows us to explicitly compare the parameters as predicted by the learning
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curve (θ̂(d) = ζ0 + eζ1+ζ2d) with the parameter that is directly involved in

the process model (θ(d)). The amount of discrepancy between these pa-

rameters is quantified by the unexplained variance (σ2
θ). Note also that

since the exponential curve has three parameters, and there are only five

days, the nonlinear regression will not reduce the complexity of the data

by much, and a good fit is likely if the parameters follow the expected

qualitative pattern.

Finally, we assume a linear effect of practice on the drift rate component

that is day-dependent. Formally, λ(wd) = $(w)0 + $(w)1d + ε(wd), with

ε(wd) ∼ N
(

0, σλ(w)

)

. Again, this effect is allowed to differ between words

and nonwords.

This model, where trial-to-trial variability is combined with learning

functions, will be called the learning explanatory model (LEM).

4.5.2.3 Results—technical

We again drew 10, 000 samples in each of six chains. We discarded the first

5, 000 samples as burn-in and computed the R̂ statistic for each parameter.

The statistic was always lower than 1.05. Again, no issues with convergence

were noticeable in a visual inspection of the sample chains.

4.5.2.4 Results—substantive

Using the DIC criterion, the LEM (DIC: −19426.60) performs much better

than the DLM (DIC: −18795.60). This indicates that the decrease in

the number of parameters (due to the move from the descriptive to the

explanatory model) results in a relatively small change in the lack of fit.

Figure 4.5 shows estimates for nondecision time and boundary separation

from the two models. It is clear that the nonlinear regression of the LEM

captures the trend well. Figure 4.6 shows the posterior distributions for
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Figure 4.5: Evolution of diffusion model parameters over days. There is a
clearly nonlinear change in nondecision time and boundary separation, and the
fit of the LEM (full black line, depicting α̂(d), θ̂(d), λ̂(d,w=1), and λ̂(d,w=2)) to the
freely estimated parameters of the DLM (circles) is very good. The drift rate for
nonword recognition remains stable over days, but at word recognition, participants
seem to become more adept. The error bars go one posterior standard deviation
in both directions.

ζ2 and ψ2. The distributions allow us to derive P (ζ2 > 0) and P (ψ2 > 0),

both of which turn out to be numerically zero.

In the case of the parameters that capture the day component of drift

rate, the case is not so clear. Figure 4.7 shows the posterior distributions

for the $1(w=1) and $1(w=2) parameters. P
(

$1(w=1) > 0
)

turns out to

be .5404—in other words, the hypothesis that $1(w=1) < 0 (i.e., that

there is no positive learning effect in the case of nonword stimuli) cannot

be discarded. In contrast, P
(

$1(w=2) > 0
)

≈ .0835, providing somewhat

more evidence against the hypothesis that $1(w=2) < 0 and that learning

is occurring in the case of word stimuli.
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Figure 4.6: Posterior distributions for the change rate parameters for nonde-
cision time (ζ2) and boundary separation (ψ2). Since there is no posterior mass
above zero in either case, we can conclude that there is, indeed, an effect of lear-
ning on these parameters.
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Figure 4.7: Posterior distributions for the change rate parameters for the two
drift rates (nonwords: w = 1; words: w = 2). In both cases, the distributions
clearly straddle the value 0.
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4.5.2.5 Conclusion

The LEM performs relatively well for this data set. Several interesting

conclusions can be drawn. Firstly, an exponential learning model captures

the changes in boundary separation and nondecision time well. Secondly,

there is no evidence for a learning effect on nonwords. Finally, word sti-

muli bring about more variability in performance than do nonword stimuli.

More extensive conclusions can be found in Dutilh et al. (2008).

4.5.3 Example 2, part 2: Extra explanatory covariates

4.5.3.1 Introduction

While the previous models formalize many of the interesting aspects of

the theory of practice, and makes use of an external covariate (days) to

explain variance in diffusion model parameters, it is purely descriptive on

the item side of the data. However, since half of the items used are real

Dutch words, several item covariates are available. It is conceivable that

variability in item characteristics explains some of the variability in the

diffusion model parameters. Particularly, part of the unexplained variance

in drift rate (i.e., the magnitude of the random effect of item on drift rate)

might be related to an item property. We have obtained one such covariate:

the words’ usage frequencies. We now construct a new model that extends

the LEM above into a two-way explanatory model (TEM; because we use

covariates to explain both the learning rate and variability on the item

side).

4.5.3.2 Model

The extension is mathematically minor. We simply add to the LEM the

following assumption about the mean of the distribution that governs the
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random effect of item:

µγ(w=2,s) = ρF(s),

where F(s) is the (normalized) frequency of stimulus s. Of course, only

words (w = 2) have an associated frequency (i.e., µγ(w=1,s) = 0 for all s).

4.5.3.3 Results—technical

As in the previous models, no problems with convergence were apparent.

The R̂ value for the new parameter ρ was close to 1, and its sample chains

showed rapid mixing.

4.5.3.4 Results—substantive

The only new parameter of interest is ρ, whose EAP turns out to be

very close to zero. Moreover, since the covariate F was normalized, we

can derive that a value of ρ that is less than 0.01 in absolute value is

very small and essentially meaningless (because F will typically be less

than 3 in absolute value, and the regression contribution to the drift rate

µγ(w=2,s) = ρF(s) will therefore be less than 0.03 for all items). From the

posterior distribution of ρ (shown in Figure 4.8), we can compute that

P (−0.01 < ρ < 0.01) ≈ .554. Hence, the new parameter does not seem to

contribute to model performance. It is unsurprising, therefore, that the

DIC of the TEM (−19359.00) is worse than that of the LEM.

4.5.3.5 Conclusion

Extending the LEM with a predictor on the item side of the model was,

with the predictor we used, not a success. The TEM does not perform

better than its simpler version, the LEM. However, the TEM does provide

a worked example of how a more complicated, and plausible, hypothesis

about the data can be tested within the HDM framework.
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Figure 4.8: The posterior distribution of the regression slope parameter ρ for
model TEM. The parameter does not appear to differ from zero.

4.5.4 Example 3: ANOVA and random person-domain effects

4.5.4.1 Introduction

In the previous applications, we have focused on single participants (mainly

because the data sets contained only three and four participants, respecti-

vely). However, one of the most significant advantages of the hierarchical

setting is that it allows the simultaneous analysis of many participants’

choice response time data. For example, diffusion parameters could be

kept constant across items for each participant, but individual participants’

parameters would be considered random draws from a population distribu-

tion. This would be a most typical hierarchical model; van der Linden (in

press) would call this a population model. Analyzing data from different

participants simultaneously results in greater stability for the statistical

inferences. In particular, by allowing “cross-talk” between data from dif-

ferent participants, it becomes possible to fit the model even with relatively

few data points per participant.

However, because it remains unreasonable to assume that all parame-
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Figure 4.9: The graphical model representation of the PHM. See text for details.

ters stay exactly constant across trials, we can combine mixing over trials

with mixing over persons. This would yield a multilevel random effects

design wherein the parameters of individual participants’ mixing distribu-

tions are themselves draws from a population-level distribution. A graphi-

cal representation of this multilevel diffusion model is given in Figure 4.9.

The data set to which we will apply this model is taken from a change

detection study (Vandekerckhove, Panis, & Wagemans, 2007, data used

with permission). For a detailed description of the research questions, the

reader is referred to Vandekerckhove et al. (2007). For the purposes of our

demonstration, it suffices to know that the difficulty of a visual detection

task was manipulated in a 2-by-2 factorial design, and that there were

nine participants. The independent variables of interest will be called Q,

for quality, and T , for type. Because the manipulations are all intended

to affect higher-order properties of the stimulus, we expect changes in

drift rate, but not in any other variable. The main research question was

whether there is an effect of T on detection performance, and whether this

effect is independent of Q. It is hence a simple ANOVA-type design, and

we are interested in the main effect of T and the T -by-Q interaction. The
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factorial design is given in the second and third column of Table 4.3.

4.5.4.2 Model

We will define only one model, which includes a hierarchical structure that

provides cross-talk between different participants’ data. The assumptions

of this population-hierarchical model (PHM) are as follows.

First, the basic parameters follow mixing distributions (over trials)

whose parameters depend on participant p and may depend on condition

i (in the case of drift rate)

τ(pij) ∼ N
(

θ(p), χ(p)

)

,

δ(pij) ∼ N
(

ν(pi), η(p)

)

.

Furthermore, we assume that β(pij) = .5. In words, we will apply an

unbiased diffusion process with trial-to-trial variability in nondecision time

and in drift rate. The mean of the drift rate distribution depends both on

the participant and on the condition.

Second, we treat all interindividual differences as random effects (since

we know that participants were a random sample from a larger population):

α(p) ∼ N
(

µα, σ
2
α

)

,

θ(p) ∼ N
(

µθ, σ
2
θ

)

,

ν(pi) ∼ N
(

µν(i), σ
2
ν(i)

)

.

Note that the fixed effect of condition i remains present in the depen-

dence of µν(i) on i, but now it exists on the population level. It is not

necessary to define the factorial structure of the conditions in the expe-

riment at this stage: since the parameters in a linear model that quantify
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main effects and interactions are simple linear combinations of the data

(i.e., the mean in each condition), we can compute posterior distributions

for each conditional mean first, and derive the posterior distributions of

the ANOVA parameters later8 (see the substantive results section).

Finally, although it is not the primary focus of the present analysis, the

trial-to-trial variability parameters are also given population distributions:

χ(p) ∼ N
(

µχ, σ
2
χ

)

and η(p) ∼ N
(

µη, σ
2
η

)

.

In all cases, the population distributions are truncated to a reasonable

interval (for numerical stability; see Appendix 4.B for the intervals).

4.5.4.3 Results—technical

We ran six chains for 10, 000 iterations each. For no parameters did the

R̂ value exceed 1.05. Based on visual inspection, mixing was good. See

Figure 4.10 for an example.

4.5.4.4 Results—substantive

We are interested in two different aspects of the results. For the experi-

menter, it is important to know whether a main effect of T and a T -by-Q

interaction appear on the mean drift rates µν(i). From a general-interest

perspective, we are additionally interested in the population-level variabi-

lity of the different parameters.

Summary statistics of the obtained drift rate population distributions

(per condition) are given in Table 4.3. It can be seen that the distributions

differ strongly between conditions. In order to more precisely investigate

our hypotheses, we will transform the drift rate distributions into ANOVA

contrast parameters which exactly quantify the effects we are interested in.

8Parameters that are not directly estimated themselves but are obtained from trans-
formations and/or combinations of other parameters are sometimes called derived para-

meters or structural parameters (Congdon, 2003; Jackman, 2000).
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Figure 4.10: An example sample chain from model PHM. The parameter shown
is µα, the population mean of the boundary separations. In the left graph, the
first 50 iterations are depicted, showing that the six chains rapidly converge to the
same region. In the right graph, the entire chains are shown, showing that the six
chains appear to be sampling from the same stationary distribution.

Table 4.3: Posterior distributions of the mean drift rate in the population, per
condition. Where T is 0, the population distribution of drift rate has much mass
around 0.

i Type (T ) Quality (Q) µν(i) σν(i)
1 1 0 0.0870 0.0357
2 0 0 -0.0347 0.0555
3 1 1 0.2700 0.0558
4 0 1 0.0363 0.0448

First, the main effect of T is given by the contrast ζT = (µν(1) + µν(3)) −
(µν(2) +µν(4)), for which the posterior distribution is shown in Figure 4.11.

It is clear from that figure that P (ζT < 0) ≈ 0. There is hence very strong

evidence for a main effect of T , averaged over levels of Q. Similarly, in the

second panel in Figure 4.11, we can confirm that there is a main effect of

Q, since for ζQ = (µν(1) + µν(2)) − (µν(3) + µν(4)), P (ζQ < 0) ≈ .994.

To investigate the interaction, we compute the interaction contrast

ζI = (µν(1) − µν(2)) − (µν(3) − µν(4)). As it turns out, P (ζI < 0) ≈ .886,

providing only marginally convincing evidence for an interaction. A nega-
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Figure 4.11: Contrast parameters for the third application. See text for details.

tive interaction in this context would mean that the joint effect of the T

and Q variables is smaller than the sum of their individual main effects.

The population variability in the parameters is directly quantified

by their variance parameters. The EAPs of the interperson variabilities

of boundary separation, mean nondecision time, intertrial variability of

nondecision time, and intertrial variability in drift rate are, respectively,

σα = 0.0541, σθ = 0.0663, σχ = 0.0174, and ση = 0.0858.

Given these estimated population distribution parameters and their

remaining uncertainty (i.e., the posterior variance of these parameters), we

can now depict the distribution of the model parameters in the population

by computing posterior predictive distributions. Take, for illustration, the

population distribution of α. Given a single sample µ
(s)
α from the posterior

distribution of µα, and a single sample σ
(s)
α from the posterior distribution

of σα, we can generate a single sample α(s). Repeating this procedure many

times yields a vector of α values that are sampled from the population

distribution. Thus, a sufficiently high number of samples obtained this

way represents the expected population distribution of α. Figure 12 shows
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Figure 4.12: Posterior predictive population distributions of two parameters
of the PHM. The population distribution of θ is bell-shaped and narrow. The
population distribution of α is wider.

these predicted population distributions for the α and θ parameters. The

parameter estimates for the nine participants in the experiment are shown

as circles under the distribution curve. It can be seen from the figure that

population variability in α is quite large, while it is comparatively small for

θ. Also, while the θ parameters seem to follow a bell-shaped distribution,

α parameters are more spread out, and even appear to occur in clusters.

4.5.4.5 Conclusion

In the final application, we applied a population-hierarchical model to

choice response time data. We computed ANOVA-style contrasts for the

two-by-two factorial design and found two main effects of the independent

variables on the drift rate parameter. The population-hierarchical diffu-

sion model is especially noteworthy because it combines information from

different participants (and conditions) in a single model, allowing for cross-

talk between the data, more reliable parameter estimates, and hypothesis

tests at the population level.
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4.6 Software implementation and technical details

We believe the hierarchical extension of the Wiener diffusion process has

much potential for the field of cognitive science. However, applying this

model in practice is difficult and may be prohibitively onerous for many

researchers. For this reason, it is important also to publish computer

software to aid in the application of the HDM.

Our software implementation (presented in Appendix 4.A) is not a full

software package, but rather a plug-in to an existing software package,

WinBUGS. The Appendix details how the software and plug-ins need to

be installed, and also presents some examples of usage. Note that the

software is dependent on Microsoft Windows, and cannot be made to run

on other systems. A specialized HDM software package is, at the time of

writing, still in the planning stage.

4.7 Discussion

We have introduced a hierarchical extension of the Wiener diffusion model

for two-choice response times (hierarchical diffusion model or HDM). With

a small set of examples, we have demonstrated the feasibility of the HDM.

In strictly formal terms, the HDM is just another nonlinear mixed model

(NLMM), but it is special because it uses a bivariate measurement level.

This new data analysis approach is characterized by great flexibility com-

pared to existing treatments of choice response time data. Additionally,

by using the Wiener diffusion process as the measurement level, the hie-

rarchical analysis can be performed on parameters that have well-defined

substantive interpretations.

The substantively interesting process interpretation of the diffusion mo-

del parameters is important for several reasons. Firstly, it is particularly
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appealing in the context of Borsboom’s (2006) view that the fact that

measurement models lack substantive foundation is the main reason psy-

chometrics has had a limited impact. That is, while the analysis of choice

response time data in a hierarchical framework has already been addressed

in the psychometric literature (van der Linden, in press), that approach

has been strictly psychometrical and does not have the advantage of an

interpretable process model as measurement model.

Secondly, thanks to the substantively interesting process interpretation

of the diffusion model parameters, the HDM framework is an instance of

cognitive psychometrics, a relatively young subdiscipline of psychology. In

this subdiscipline, models of cognition are extended to encompass indivi-

dual differences (i.e., participants are no longer considered as mere repli-

cations of one another; Batchelder, 1998) in order to allow for population-

level inferences. This strategy has gained some momentum recently, with

several articles applying hierarchical models to pool data over participants

(e.g., Morey, Pratte, & Rouder, in press; Morey, Rouder, & Speckman,

2008; Hoffman & Rovine, 2007; Wetzels, Vandekerckhove, Tuerlinckx, &

Wagenmakers, in press), but the approach is presently far from mains-

tream.

We have elected to implement the HDM using Bayesian statistical me-

thods. This choice was influenced by many factors, both practical and prin-

cipled. An important corollary of the Bayesian framework is that results

from such an analysis have direct and often intuitive interpretations. In one

of the examples, we derived posterior distributions of ANOVA contrasts,

from which we could directly draw (probabilistic) inferences regarding the

hypotheses at hand.

In order to facilitate the dissemination of hierarchical models (i.e., cog-

nitive psychometrics) into mainstream cognitive science, we have provided

software with which a hierarchical model for two-choice response time data
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can be put into practice. While this software has some limitations (in par-

ticular, somewhat inefficient sampling), we believe it may be useful for a

wide audience.
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4.A Software implementation of the HDM

In this Appendix, we present wiener.odc and wienereta.odc , two

pieces of Component Pascal code that can be incorporated into the popu-

lar Bayesian computation program WinBUGS (Lunn et al., 2000). With

wiener.odc and wienereta.odc installed, WinBUGS’s full range of

general-purpose Markov chain Monte Carlo (MCMC) methods can be

applied to the Wiener diffusion’s two-choice reaction time distribution.
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This extension to WinBUGS has been successfully applied to Ratcliff and

Rouder’s (1998) benchmark data by Vandekerckhove, Tuerlinckx, and Lee

(2008).

In what follows, we will first provide instructions on the installation and

use of wiener.odc and wienereta.odc . We will also provide some

example code for a basic analysis and an example using a mixed-model

Wiener process. We will finish with some warnings regarding (computa-

tional) limitations to the code.

Installing the files

The wiener.odc and wienereta.odc files are released under the GNU

General Public License, which can be accessed via http://www.gnu

.org/copyleft/gpl.html . The files can be obtained from the first

author.

Required materials

In order to use these files, you need to download and install three pieces of

software, all of which are freely available on the internet. Install them

in the order given. If you already have BlackBox installed, read the

WinBUGS development page for instructions (http://www.winbugs

-development.org.uk/ ).

1. WinBUGS. This is the basic program you will be using. It can

be downloaded from http://www.mrc-bsu.cam.ac.uk/bugs/

winbugs/contents.shtml . You need to register to get a key, but

registration is free. Download and install the most recent version (at

the time of writing, version 1.4.3).

2. WinBUGS Development Interface (WBDev). To be downloaded via

http://www.winbugs-development.org.uk/ . Unzip the exe-
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cutable to your WinBUGS directory. Then open, with WinBUGS,

the wbdev\ 01\ 09\ 04.txt file that has appeared there and fol-

low the instructions at the top of the file.

3. BlackBox Component Builder. This is an integrated development en-

vironment for programs written in Component Pascal (as WinBUGS

is). It can be freely downloaded from http://www.oberon.ch/

blackbox.html . This page also has a tutorial on Component Pas-

cal, which may be useful in case you would like to write your own

distributions or adapt the wiener.odc file. The most recent ver-

sion of this program is 1.5 at the time of writing. Note that BlackBox

Component Builder only runs on Windows platforms.

Download and install these three programs. Install WinBUGS

in /Program Files/WinBUGS and BlackBox in /Program Files/

BlackBox Component Builder 1.5 . WBDev will have created its

own directory /WinBUGS/WBDev.

Preparing BlackBox and compiling the ODC files

In your browser, open the WinBUGS directory and select all files

(Ctrl+A) and copy them (Ctrl+C). Then open the BlackBox directory

and paste those files there (Ctrl+V). Select “Yes to all” if asked about

replacing files. Once this is done, you will be able to open BlackBox and

run WinBUGS from inside it.

Now copy the files wiener.odc and wienereta.odc to the /

BlackBox Component Builder 1.5/WBDev/Mod directory and then

use BlackBox to open it. Press Ctrl+K to compile the distribution.

Now open the file /BlackBox Component Builder 1.5/WBDev/

Rsrc/Distributions.odc and add the following lines of text to the

end of the file (right above the ENDstatement):
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s ∼ "dwiener"(s, s, s, s)I(s, s)

"WBDevWiener.Install"

s ∼ "dwiener.eta"(s, s, s, s, s)I(s, s)

"WBDevWienerEta.Install".

Restart BlackBox to begin using the new distributions.

Using the distribution

Difference between wiener.ODC and wienereta.ODC

It is a common practice to assume trial-to-trial variability of the diffusion

model parameters. While this is in principle easy in a Bayesian context,

numerical problems arise in the wiener.odc function that make that va-

riability in drift rate becomes difficult to estimate. For this reason, we also

provide wienereta.odc . This file directly implements a diffusion model

with trial-to-trial variability in drift rate (using the logarithm of Eq. 30

in Tuerlinckx, 2004, for the correct PDF for this case) and is numerically

more robust for this case. In all other respects, the files are the same.

Formatting two-choice reaction time data

As user–contributed distributions in WinBUGS are necessarily unidimen-

sional, we need to apply a trick to get it to accept the bivariate diffusion

PDF. Consider that one dimension of the PDF is binary (response, denoted

xi), and the other is defined only on the positive half–line (reaction time,

denoted ti). It follows that a distribution on the full real line is defined by:

yi =







ti if xi = 1

−ti if xi = 0
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When using wiener.odc or wienereta.odc , you will need to code

your two–choice reaction time to match the format of yi. The functions

will internally convert the negative response times to positive–valued error

responses and treat the distribution as bivariate for the calculation of the

likelihood value.

Examples of usage

Basic usage in WinBUGS

In order to implement wiener.odc , simply use a line like

s ∼ dwiener(alpha, zinit, tau, delta)

in your WinBUGS code where zinit is the starting point in absolute

value (i.e., αβ). Below we give a simple example for a data set with nc

conditions (labeled 1, . . . , nc) and a total of N data points. The responses

(properly formatted, in seconds, with positive and negative numbers) are

stored in the variable y and condition indicators are in cond. This model

assumes boundary separation alpha, bias beta, and nondecision time tau

to be constant across conditions, but allows drift rate delta to differ (i.e.,

a fixed effect of condition on drift rate).

Fit a simple Wiener diffusion model {

# Define priors on parameters

beta ˜ dunif(0.1,0.9)

tau ˜ dunif(0.05,1.00)

alpha ˜ dunif(0.03,0.25)

# Insert a ‘plate’ to define multiple

# deltas

for (r in 1:nc)
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{

delta[r] ˜ dunif(-0.75,0.75)

}

# Compute zinit from alpha and beta

zinit <- alpha * beta

# Connect the data to the Wiener process

for (i in 1:N)

{

y[i] ˜ dwiener(alpha,tau,zinit,

delta[cond[i]])

}

}

Advanced usage 1: Mixed model on nondecision time

In many cases, it is desirable to allow a parameter to vary from trial to trial

according to a certain distribution (i.e., to use a “mixed model”). In the

classical statistical framework, this leads to complicated integrals in the

likelihood function. For example, to allow the nondecision time parameter

to vary over trials, the likelihood function for conditions p = 1, . . . , P

and items i = 1, . . . , I becomes complicated as in Equation 4.5, where

the diffusion PDF is given in Equation 4.6 and TN(µ, σ, L,U) indicates

the truncated normal distribution with mean µ, standard deviation σ and

lower and upper bounds L and U , respectively.
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L(tip, xip|αp, ζp, δp, µτ , σ2
τ , L, U) =

P
∏

p=1

I
∏

i=1

∫ +∞

−∞

Diffusion(tip, xip|αp, τ, ζp, δp)×

TN
(

τ |µτ , σ2
τ , L, U

)

dτ (4.5)

Diffusion(t, x|α, τ, ζ, δ) =






























πs2

α2 exp
(

− ζδ
s2

)

×∑+∞
j=1 j sin

(

πjζ
α

)

exp
[

τ−t
2

(

δ2

s2
+ π2j2s2

α2

)]

if x = 0

πs2

α2 exp
(

− (α−ζ)δ
s2

)

×∑+∞
j=1 j sin

(

α−ζ
α πj

)

exp
[

τ−t
2

(

δ2

s2
+ π2j2s2

α2

)]

if x = 1

(4.6)

In a classical statistical context, this integration significantly increases

the computational cost of the likelihood function, which needs to be evalua-

ted many times in order to numerically find the parameters corresponding

to its maximum (see, e.g., Vandekerckhove & Tuerlinckx, 2007). In a Baye-

sian context, however, this integration can be performed by the MCMC

algorithm, and does not pose further computational issues. The following

code performs just such an analysis in WinBUGS, where

Y (ij) ∼W
(

α(i), β, τ(ij), δ
)

and

τ(ij) ∼ TN
(

θ, χ2, 0, 1
)

.
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Fit a Wiener diffusion model with mixing over

nondecision time {

# Define priors on parameters

delta ˜ dunif(-0.9,0.9) # assume only one

# drift rate now

beta ˜ dunif(0.01,0.99)

# but suppose different boundary

# separations

for (i in 1:nc)

{

alpha[i] ˜ dunif(0.03,0.40)

zinit[i] <- alpha[i] * beta

}

# Use a truncated normal distribution for

# tau, with mean theta and standard

# deviation chi

theta ˜ dunif(0.05,0.80)

chi ˜ dgamma(0.001,0.001)

# Note that, for the parametrization of the

# normal distribution, WinBUGS uses

# 1/variance (precision) instead of the

# standard deviation

precision <- pow(chi,-2)

# Connect the data to the Wiener process

# but add the tau distribution as well

for (i in 1:N)

{

# Use I(X,Y) to truncate below X and

# above Y

tau[i] ˜ dnorm(theta,precision)I(0,1)
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y[i] ˜ dwiener(alpha[cond[i]],tau[i],

zinit[cond[i]],delta)

}

}

Advanced usage 2: Mixed model on drift rate

In order to apply a mixed model on drift rate, the above method may lead

to numerical instability in the computation of the PDF. For this reason,

we have also provided wienereta.odc , which is optimized for this case.

In this implementation, the drift rate δ for each individual trial is assumed

to be a draw from a normal distribution with mean ν and standard devia-

tion η. Accordingly, when using the distribution, a fifth input parameter

is required. Thus, in order to use wienereta.odc , type

s ∼ dwiener.eta(alpha, zeta, tau, nu, eta)

The parameter η (eta ) should be restricted (in its prior) to be positive.

The following is some example code for using wienereta.odc .

Fit a Wiener diffusion model {

# Define priors on parameters

beta ˜ dunif(0.01,0.99)

tau ˜ dunif(0.05,0.80)

alpha ˜ dunif(0.03,0.50)

nu ˜ dunif(-0.6,0.6)

eta ˜ dunif(0,0.4)

# Compute zinit from alpha and beta

zinit <- alpha * beta
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# Connect the data to the Wiener process

for (i in 1:N)

{

y[i] ˜ dwiener.eta(a,ter,z,v,eta)

}

}

Advanced usage 3: Posterior predictive values

The wiener.odc and wienereta.odc files are equipped with efficient

simulators for two–choice reaction time data under a Wiener diffusion mo-

del (Tuerlinckx, Maris, Ratcliff, & De Boeck, 2001). This sampler has two

uses. Firstly, it can be employed in a simulation study (e.g., for power

analysis). Secondly, and more importantly, it can be used to generate pos-

terior predictive values (Gelman et al., 2004). Applying this in WinBUGS

is straightforward, and a simple example is given below. WinBUGS can

then be made to output these posterior predictive samples to a so-called

coda file, which can be read by an external program (e.g., MATLAB or R),

which can then compute summary statistics on the posterior predictives

and compare the distributions of these samples to the values found in the

data.

Fit a Wiener diffusion model {

# Define priors on parameters

delta ˜ dunif(-0.9,0.9)

beta ˜ dunif(0.01,0.99)

alpha ˜ dunif(0.03,0.50)

zinit <- alpha * beta
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tau ˜ dunif(0.05,0.80)

# Connect the data to the Wiener process

for (i in 1:N)

{

y[i] ˜ dwiener(alpha,tau,zinit,delta)

}

# Use the ’cut’ function to prevent WinBUGS

# from including the PPF in the posterior

alpha.ppf <- cut(alpha)

tau.ppf <- cut(tau)

zinit.ppf <- cut(zinit)

delta.ppf <- cut(delta)

# Generate the PPF with the Wiener sampler

for (i in 1:N)

{

ppf[i] ˜ dwiener(alpha.ppf,tau.ppf,

zinit.ppf,delta.ppf)

}

}

4.B WinBUGS code for the example applications

In this Appendix, we provide the exact WinBUGS code we used for the

three example applications. There are seven models in total: BM1, BM2,

and BM3 for the first application, DLM, DEM, and TEM for the second

application, and PHM for the third application.
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Benchmark data, Model BM1 {

# Prior for beta

beta ˜ dunif(0.1,0.9)

# Insert a plate over instruction conditions

for (i in 1:2)

{

# Prior for alphas

alpha[i] ˜ dunif(0.03,0.25)

# The Wiener distribution code works with

# the zeta_init parameter and not with

# beta. So we have to rescale the entire

# mixing distribution in a somewhat

# complicated way.

# The mean of the uniform mixing

# distribution is alpha * beta

z[i] <- alpha[i] * beta

# Now we work on the range of the

# uniform. The range is constrained

# by twice the distance to the nearest

# boundary. So we create a logical node

# to store this distance (either

# alpha-zeta_init or zeta_init)

edges[i,1] <- z[i]

edges[i,2] <- alpha[i]-z[i]

szmax[i] <- 2 * min(edges[i,1],edges[i,2])

# Having the maximum of the uniform’s

# range stored, we now create a node

# with prior U(0,szmax) by rescaling a
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# U(0,1) prior. Note that the Beta(1,1)

# prior is the same as a U(0,1) prior.

sztmp[i] ˜ dbeta(1,1)

sz[i] <- sztmp[i] * szmax[i]

# sz now has the correct prior

# To apply the mixing distribution later,

# we store the lower bound of the

# trial-to-trial mixing distribution.

zlo[i] <- z[i]-sz[i]/2

# Insert a plate over brightness

# conditions and set a population

# distribution for the condition-specific

# drift rates.

for (s in 1:nc)

{

# Mean of the population distribution

# is determined by a single parameter

# in this particular model.

nu.hat[s,i] <- mu

nu[s,i] ˜ dnorm(nu.hat[s,i],prec)

I(-.95,.95)

}

}

# The mean has a prior

mu ˜ dunif(-.7,.7)

# The standard deviation of the population

# distribution is sigma_epsilon but needs to

# be transformed into a precision (1/var).

sigma.epsilon ˜ dunif(0.0001,0.6)

prec <- pow(sigma.epsilon,-2)
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# The trial-to-trial mixing of nondecision

# time also needs a mean and a precision.

theta ˜ dbeta(1,1)

chi ˜ dbeta(1,1)

pt <- pow(chi,-2)

# The trial-to-trial mixing of drift rate is

# coded directly into the distribution file,

# so we don’t need to transform the standard

# deviation eta. The mean of the mixing

# distribution is the nu parameter that was

# defined above.

eta ˜ dunif(0.0001,.4)

# Now we ’loop’ over data points. We have

# covariate vectors ’stim’ and ’ins’ that

# tell us in which stimulus/instruction

# condition trial j was (ins: 1 for speed,

# 2 for accuracy).

for (j in 1:N)

{

# Trial-specific nondecision time tau.

tau[j] ˜ dnorm(theta,pt)I(0,2)

# Trial-specific zeta_init is again a

# rescaled U(0,1). The dependence on the

# instruction condition is expressed by

# using the ’ins’ covariate as an index.

ztemp[j] ˜ dbeta(1,1)

zinit[j] <- zlo[ins[j]]+

sz[ins[j]] * ztemp[j]

# Finally, the data are connected to the
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# Wiener distribution with the correct

# parameters.

t[j] ˜ dwiener.eta(alpha[ins[j]],tau[j],

zinit[j],nu[stim[j],

ins[j]],eta)

}

}

Benchmark data, Model BM2 {

beta ˜ dunif(0.1,0.9)

for (i in 1:2)

{

alpha[i] ˜ dunif(0.03,0.25)

z[i] <- alpha[i] * beta

edges[i,1] <- z[i]

edges[i,2] <- alpha[i]-z[i]

szmax[i] <- 2 * min(edges[i,1],edges[i,2])

sztmp[i] ˜ dbeta(1,1)

sz[i] <- sztmp[i] * szmax[i]

zlo[i] <- z[i]-sz[i]/2

for (s in 1:nc)

{

# Mean of the population distribution

# is now a nonlinear function of s,

# the stimulus intensity condition.

pmf[s,i] <- 1-exp(-pow(s

/(33 * nu.sc),nu.sh))

nu.hat[s,i] <- nu.lo + (nu.hi-nu.lo)

* pmf[s,i]
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nu[s,i] ˜ dnorm(nu.hat[s,i],prec)

I(-.95,.95)

}

}

# The Weibull link parameters get priors.

nu.lo ˜ dunif(-0.95,-0.2)

nu.hi ˜ dunif(0.2,0.95)

nu.sc ˜ dunif(0.25,0.75)

nu.sh ˜ dunif(1,20)

sigma.epsilon ˜ dunif(0.0001,0.6)

prec <- pow(sigma.epsilon,-2)

theta ˜ dbeta(1,1)

chi ˜ dbeta(1,1)

pt <- pow(chi,-2)

eta ˜ dunif(0.0001,.4)

for (j in 1:N)

{

tau[j] ˜ dnorm(theta,pt)I(0,2)

ztemp[j] ˜ dbeta(1,1)

zinit[j] <- zlo[ins[j]]+sz[ins[j]]

* ztemp[j]

t[j] ˜ dwiener.eta(alpha[ins[j]],tau[j],

zinit[j], nu[stim[j],

ins[j]],eta)

}

}
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Benchmark data, Model BM3 {

beta ˜ dunif(0.1,0.9)

for (i in 1:2)

{

alpha[i] ˜ dunif(0.03,0.25)

z[i] <- alpha[i] * beta

edges[i,1] <- z[i]

edges[i,2] <- alpha[i]-z[i]

szmax[i] <- 2 * min(edges[i,1],edges[i,2])

sztmp[i] ˜ dbeta(1,1)

sz[i] <- sztmp[i] * szmax[i]

zlo[i] <- z[i]-sz[i]/2

# In this model, the Weibull link

# parameters are allowed to differ as a

# function of the instruction condition.

nu.lo[i] ˜ dunif(-0.95,-0.2)

nu.hi[i] ˜ dunif(0.2,0.95)

nu.sc[i] ˜ dunif(0.25,0.75)

nu.sh[i] ˜ dunif(1,20)

for (s in 1:nc)

{

pmf[s,i] <- 1-exp(-pow(s/

(33 * nu.sc[i]),nu.sh[i]))

nu.hat[s,i] <- nu.lo[i] +

(nu.hi[i]-nu.lo[i])

* pmf[s,i]

nu[s,i] ˜ dnorm(nu.hat[s,i],prec)

I(-.95,.95)

}
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}

sigma.epsilon ˜ dunif(0.0001,0.6)

prec <- pow(sigma.epsilon,-2)

theta ˜ dbeta(1,1)

chi ˜ dbeta(1,1)

pt <- pow(chi,-2)

eta ˜ dunif(0.0001,.4)

for (j in 1:N)

{

tau[j] ˜ dnorm(theta,pt)I(0,2)

ztemp[j] ˜ dbeta(1,1)

zinit[j] <- zlo[ins[j]]+sz[ins[j]]

* ztemp[j]

t[j] ˜ dwiener.eta(alpha[ins[j]],tau[j],

zinit[j],nu[stim[j],

ins[j]],eta)

}

}

This is the Descriptive Learning Model (DLM) {

# The means of the item population

# distributions have to be fixed to achieve

# model identifiability.

mu.gamma[1] <- 0

mu.gamma[2] <- 0

# A plate for word/nonword
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for (w in 1:2)

{

# The population standard deviations

# omega are estimable, however. They

# need to be converted to precisions.

sigma.gamma[w] ˜ dunif(0.0001,.45)

tau.gamma[w] <- pow(sigma.gamma[w],-2)

# A plate for the individual stimuli.

for (s in 1:nstim)

{

gamma[s,w] ˜ dnorm(mu.gamma[w],

tau.gamma[w])

I(-.7,.7)

}

mu.lambda[w] ˜ dunif(-.6,.6)

sigma.lambda[w] ˜ dunif(0.001,0.3)

tau.lambda[w] <- pow(sigma.lambda[w],-2)

# A plate for the fixed effect of day.

# Both the drift rate component lambda

# and the trial-to-trial standard

# deviation eta are affected.

for (d in 1:nd)

{

lambda[d,w] ˜ dnorm(mu.lambda[w],

tau.lambda[w])

I(-.7,.7)

}

}

# The other parameters also have an effect

# of day.
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# Random effect for alpha, beta and theta:

mu.alpha ˜ dunif(0.03,0.20)

sigma.alpha ˜ dunif(0.0001,0.15)

tau.alpha <- pow(sigma.alpha,-2)

mu.theta ˜ dunif(0,1)

sigma.theta ˜ dunif(0.0001,0.2)

tau.theta <- pow(sigma.theta,-2)

mu.beta ˜ dunif(0.35,0.65)

sigma.beta ˜ dunif(0.0001,0.2)

tau.beta <- pow(sigma.beta,-2)

# Finally, trial-to-trial variability

chi ˜ dunif(0.001,0.2)

chi.inv <- pow(chi,-2)

eta ˜ dunif(0.001,0.3)

for (d in 1:nd)

{

alpha[d] ˜ dnorm(mu.alpha,tau.alpha)

I(0.01,0.25)

beta[d] ˜ dnorm(mu.beta,tau.beta)

I(0.25,0.75)

theta[d] ˜ dnorm(mu.theta,tau.theta)I(0,)

zeta.init[d] <- beta[d] * alpha[d]

# Each stimulus drift rate is the sum of

# a day component and an item component.

# Other combinations than the additive

# are possible, and very easy to

# implement.

for (s in 1:nstim)

{



4.B WinBUGS code for the example applications 203

nu[d,s,1] <- lambda[d,1]+gamma[s,1]

nu[d,s,2] <- lambda[d,2]+gamma[s,2]

}

}

for (i in 1:N)

{

tau[i] ˜ dnorm(theta[day[i]],chi.inv)

I(0,)

t[i] ˜ dwiener.eta(alpha[day[i]],

tau[i],zeta.init[day[i]],

nu[day[i],stim[i],wnw[i]],

eta)

}

}

This is the Learning Explanatory Model (LEM) {

mu.gamma[1] <- 0

mu.gamma[2] <- 0 # the addition to phi[2]

# is made below

# One new parameter: the regression weight

# of the covariate.

rho ˜ dunif(-0.1,0.1)

varpi1[1] ˜ dnorm(0,100)

varpi1[2] ˜ dnorm(0,100)

varpi0[1] ˜ dnorm(.3,10)

varpi0[2] ˜ dnorm(-.3,10)

psi0 ˜ dnorm(0.08,1000)
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psi1 ˜ dnorm(-4,10)

psi2 ˜ dnorm(-1,100)

zeta0 ˜ dnorm(.33,100)

zeta1 ˜ dnorm(-3.53,10)

zeta2 ˜ dnorm(-.68,100)

sigma.alpha ˜ dunif(0.0001,0.15)

tau.alpha <- pow(sigma.alpha,-2)

sigma.theta ˜ dunif(0.0001,0.2)

tau.theta <- pow(sigma.theta,-2)

for (w in 1:2)

{

sigma.gamma[w] ˜ dunif(0.0001,.45)

tau.gamma[w] <- pow(sigma.gamma[w],-2)

for (s in 1:nstim)

{

gamma[s,w] ˜ dnorm(mu.gamma[w],

tau.gamma[w])

I(-.7,.7)

}

sigma.lambda[w] ˜ dunif(0,0.2)

tau.lambda[w] <- pow(sigma.lambda[w],-2)

for (d in 1:nd)

{

lambda.hat[d,w] <- varpi0[w]

+ varpi1[w] * (d-3)

lambda[d,w] ˜ dnorm(lambda.hat[d,w],

tau.lambda[w])

I(-.7,.7)
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}

}

chi ˜ dunif(0.001,0.2)

chi.inv <- pow(chi,-2)

eta ˜ dunif(0.001,0.3)

mu.beta ˜ dunif(0.35,0.65)

sigma.beta ˜ dunif(0.0001,0.2)

tau.beta <- pow(sigma.beta,-2)

for (d in 1:nd)

{

alpha.hat[d] <- psi0 + exp(psi1

+ psi2 * (d-3))

alpha[d] ˜ dnorm(alpha.hat[d],tau.alpha)

I(0.01,0.25)

beta[d] ˜ dnorm(mu.beta,tau.beta)

I(0.25,0.75)

zeta.init[d] <- beta[d] * alpha[d]

theta.hat[d] <- zeta0 + exp(zeta1

+ zeta2 * (d-3))

theta[d] ˜ dnorm(theta.hat[d],

tau.theta)I(0,)

for (s in 1:nstim)

{

nu[d,s,1] <- lambda[d,1]+gamma[s,1]

# Here we add a frequency weight to nu

nu[d,s,2] <- lambda[d,2]
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+gamma[s,2]+rho * 0

}

}

for (i in 1:N)

{

tau[i] ˜ dnorm(theta[day[i]],chi.inv)

I(0,)

t[i] ˜ dwiener.eta(alpha[day[i]],tau[i],

zeta.init[day[i]],

nu[day[i],stim[i],

wnw[i]],eta)

}

}

This is the Two-way Explanatory Model (TEM) {

mu.gamma[1] <- 0

mu.gamma[2] <- 0 # the addition to phi[2] is

# made below

# One new parameter: the regression weight

# of the covariate.

rho ˜ dunif(-.1,.1)

varpi1[1] ˜ dnorm(0,100)

varpi1[2] ˜ dnorm(0,100)

varpi0[1] ˜ dnorm(.3,10)

varpi0[2] ˜ dnorm(-.3,10)

psi0 ˜ dnorm(0.08,1000)

psi1 ˜ dnorm(-4,10)
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psi2 ˜ dnorm(-1,100)

zeta0 ˜ dnorm(.33,100)

zeta1 ˜ dnorm(-3.53,10)

zeta2 ˜ dnorm(-.68,100)

sigma.alpha ˜ dunif(0.0001,0.15)

tau.alpha <- pow(sigma.alpha,-2)

sigma.theta ˜ dunif(0.0001,0.2)

tau.theta <- pow(sigma.theta,-2)

for (w in 1:2)

{

sigma.gamma[w] ˜ dunif(0.0001,.45)

tau.gamma[w] <- pow(sigma.gamma[w],-2)

for (s in 1:nstim)

{

gamma[s,w] ˜ dnorm(mu.gamma[w],

tau.gamma[w])

I(-.7,.7)

}

sigma.lambda[w] ˜ dunif(0,0.2)

tau.lambda[w] <- pow(sigma.lambda[w],-2)

for (d in 1:nd)

{

lambda.hat[d,w] <- varpi0[w]

+ varpi1[w] * (d-3)

lambda[d,w] ˜ dnorm(lambda.hat[d,w],

tau.lambda[w])

I(-.7,.7)

}
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}

chi ˜ dunif(0.001,0.2)

chi.inv <- pow(chi,-2)

eta ˜ dunif(0.001,0.3)

mu.beta ˜ dunif(0.35,0.65)

sigma.beta ˜ dunif(0.0001,0.2)

tau.beta <- pow(sigma.beta,-2)

for (d in 1:nd)

{

alpha.hat[d] <- psi0 + exp(psi1

+ psi2 * (d-3))

alpha[d] ˜ dnorm(alpha.hat[d],tau.alpha)

I(0.01,0.25)

beta[d] ˜ dnorm(mu.beta,tau.beta)

I(0.25,0.75)

zeta.init[d] <- beta[d] * alpha[d]

theta.hat[d] <- zeta0 + exp(zeta1

+ zeta2 * (d-3))

theta[d] ˜ dnorm(theta.hat[d],tau.theta)

I(0,)

for (s in 1:nstim)

{

nu[d,s,1] <- lambda[d,1]+gamma[s,1]

# Here we add a frequency weight to nu

nu[d,s,2] <- lambda[d,2]+gamma[s,2]

+rho * freq[s]
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}

}

for (i in 1:N)

{

tau[i] ˜ dnorm(theta[day[i]],chi.inv)

I(0,)

t[i] ˜ dwiener.eta(alpha[day[i]],

tau[i],

zeta.init[day[i]],

nu[day[i],stim[i],wnw[i]],

eta)

}

}

This is the Population Hierarchical Model (PHM) {

mu.alpha ˜ dunif(0.02,0.30)

sigma.alpha ˜ dunif(0.0001,0.15)

prec.alpha <- pow(sigma.alpha,-2)

beta <- 0.5

mu.theta ˜ dunif(0.02,0.70)

sigma.theta ˜ dunif(0.0001,0.15)

prec.theta <- pow(sigma.theta,-2)

mu.chi ˜ dunif(0.0001,0.15)

sigma.chi ˜ dunif(0.0001,0.10)

prec.chi <- pow(sigma.chi,-2)

mu.eta ˜ dunif(0.001,0.45)
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sigma.eta ˜ dunif(0.0001,0.15)

prec.eta <- pow(sigma.eta,-2)

for(i in 1:nc)

{

mu.nu[i] ˜ dunif(-.5,.6)

sigma.nu[i] ˜ dunif(0,0.6)

prec.nu[i] <- pow(sigma.nu[i],-2)

}

for(p in 1:np)

{

alpha[p] ˜ dnorm(mu.alpha,prec.alpha)

I(0.01,0.25)

zeta_init[p] <- alpha[p] * beta

theta[p] ˜ dnorm(mu.theta,prec.theta)

I(0.01,0.80)

chi[p] ˜ dnorm(mu.chi,prec.chi)

I(0.00001,0.49)

prec.tau[p] <- pow(chi[p],-2)

eta[p] ˜ dnorm(mu.eta,prec.eta)

I(0.00001,0.49)

for(i in 1:nc)

{

nu[p,i] ˜ dnorm(mu.nu[i],

prec.nu[i])

I(-.7,.7)

}

}

for(j in 1:N)

{

tau[j] ˜ dnorm(theta[pnum[j]],

prec.tau[pnum[j]])I(0,)
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t[j] ˜ dwiener.eta(alpha[pnum[j]],

tau[j],

zeta_init[pnum[j]],

nu[pnum[j],cond[j]],

eta[pnum[j]])

}

}
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CHAPTER 5

A crossed random effects diffusion model for speeded

semantic categorization decisions

Abstract

Choice reaction times (RTs) are often used as a proxy measure of typicality

in semantic categorization studies. However, other item properties have

been linked to choice RTs as well. We apply a tailored process model of

choice RT to a speeded semantic categorization task in order to deconfound

different sources of variability in RT. Our model is based on a diffusion

model of choice RT, extended to include crossed random effects (of items

and participants). This model retains the interesting process interpretation

of the diffusion model’s parameters, but it can be applied to choice RTs

even in the case where there are few or no repeated measurements of each

participant-item combination. Different aspects of the response process are

then linked to different types of item properties. A typicality measure turns

215
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out to predict the rate of information uptake, while a lexicographic measure

predicts the stimulus encoding time. Accessibility measures cannot reliably

predict any component of the decision process.

Keywords: semantic categorization; response times; cognitive psy-

chometrics; hierarchical models; diffusion model

5.1 Introduction

In speeded semantic categorization tasks, participants are required to ve-

rify whether a lexical item is a true member of some semantic category,

and to do so as fast and as accurately as possible. Such tasks have for

decades been a primary tool in the study of semantic memory. It is com-

monly believed that the difference in the time it takes a participant to

determine that apple1 is a member of the category fruit and the time it

takes them to determine the same of lime may reveal important aspects of

the representation of the category fruit (McCloskey & Glucksberg, 1979;

Smith, Shoben, & Rips, 1974).

Historically, various views on the organization of semantic memory have

succeeded one another. The types of variables that have been considered

as determinants of categorization time differences offer some insight into

these different views. In the original work by Landauer and Freedman

(1968) and by Collins and Quillian (1970), two factors were considered

important determinants of categorization time: the frequency with which

lexical items appear in written discourse, and the size of the categories to

which these items (supposedly) belong. In later work, researchers turned

to associative accounts of the time needed to verify or discard category

1Throughout, we will typeset lexical entries in italics and categories in boldface

italics.
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membership. For example, Wilkins (1971) argued that the number of

times an item has been associated with the category in the past is an im-

portant determinant of the item’s categorization time, while Loftus (1973)

also made the argument for the importance of the reverse association. The

number of times a category has been associated with an item should allow

one to predict how long a participant will take to establish the set inclu-

sion relationship between the item and the category. However, it wasn’t

until Wilkins’ production frequency or instance dominance predictor and

Loftus’ category dominance predictor were complemented by measures of

category representativeness that the speeded semantic categorization task

achieved its prominence (Larochelle & Pineau, 1994). Up till now the task

remains best known for demonstrating that items that are representative

or typical of a category are more quickly endorsed than category mem-

bers that are not (Rips, Shoben, & Smith, 1973; Rosch, 1973). Since the

work by Glass and Meany (1978) and by McCloskey (1980) it is now also

generally recognized that whenever measures of typicality have an effect,

measures of familiarity are likely to be of influence as well.

As a result of these developments, researchers who nowadays are inter-

ested in studying speeded semantic categorization decisions have no choice

but to include a vast number of covariates to account for categorization

time differences. This is especially true in light of the multiple metho-

dological variations the task affords (i.e., presentation order of item and

category, choice of negative instances, etc.) and that prevent any single

contributor to categorization time variability from emerging (Casey, 1992).

The multitude of covariates that have an impact upon semantic categori-

zation time has evoked quite different attitudes towards the task. Some

choose to rally against it (e.g., Kintsch, 1980), arguing that the varying

findings indicate that existing accounts of the task are underspecified and

lack the ability to reveal anything meaningful about the structure of se-
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mantic memory. Others see it as an opportunity to investigate the cohe-

rence and interaction among the theoretical constructs thought to underlie

the various covariates. They have introduced methodological variants of

the task and employed multiple regression techniques to disentangle the

contributions of the covariates to the resulting categorization time diffe-

rences (Casey, 1992; Chumbley, 1986; Hampton, 1997; Larochelle & Pi-

neau, 1994; Larochelle, Richard, & Soulires, 2000).

The approach taken in the present paper is informed by both these

attitudes towards the speeded semantic categorization task—we believe

that current methods may be too weak, and that an in-depth investigation

should account for different covariates and their interplay. In the next

section, we will argue that clearly specified cognitive process models are

interesting tools for extracting information from data that are known to

result from processes with multiple sources of variability.

5.1.1 Process models and cognitive psychometrics

The statistical methods we apply in the present improve upon the classical

methods in two distinct ways. Firstly, we will apply a process model that

is inspired from cognitive psychology. Using a process model allows us to

express the data with a concise set of parameters that have interesting

psychological interpretations. Secondly, we will apply a hierarchical mo-

del in order to allow for differences between persons and between items.

That item differences should not be ignored was argued very strongly by

Clark (1973) and by Coleman (1964), and the detrimental effects of avera-

ging over persons have been demonstrated by, among others, Estes (1956,

2002) and Heathcote, Brown, and Mewhort (2000). Viewing the model as

a whole, each data point in the set will be conceptualized as a single reali-

zation of a specific response process, whose parameters are (at each trial)
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a unique combination of person-specific and item-specific parameters.

As discussed in the previous section, several item covariates have been

shown to covary with semantic categorization RT to some extent. The

standard methods for demonstrating these relationships have typically in-

volved general linear models (GLMs). That is, they have focused predo-

minantly on the mean RT (often after log-transformation). Others have

focused on accuracy scores, or performed person-specific regressions (and

then averaged the results). However, there have been repeated calls for

extracting more of the information that is available from RTs (e.g., Hea-

thcote, Popiel, & Mewhort, 1991). An alternative for this standard type

of analysis is to focus rather on the response process that governs the par-

ticipants’ behavior (or their interaction with the items). Process modeling

is very similar to usual statistical modeling in that a set of assumptions

are made about regularities that are presumed to be present in the data,

a set of parameters is defined that together give rise to a certain range of

predicted distributions of data, and then from the empirical distributions

the parameters are estimated using these predictions as a template.

For the general linear model, the assumptions are well-known: (1) the

criterion is in reality a linear combination of the predictors, (2) any devia-

tion from this pattern is noise, which follows a normal distribution with

mean zero, and (3) the variance of the noise distribution is constant and

independent of the predictors. These assumptions might seem quite strict,

but they provide mathematical convenience and are familiar—it is quite

easy to estimate the parameters of this model with readily available (‘off-

the-shelf’) methods. In process modeling, the genesis of a model works

from a different direction: assumptions about the process are made first

(based on theoretical insights and prior knowledge about the world) and

mathematical convenience is considered only after that. Of course, conve-

nience decisions still come into play, but typically the plausibility of the



220 Chapter 5

process and the interpretability of its parameters are paramount. In the ar-

tificial category literature, process models already abound (e.g., Lamberts,

2000; Nosofsky & Palmeri, 1997), but in the domain of natural language

categories they are largely unexplored.

A major advantage of this approach is that it occasionally allows us

to specify different, possibly independent, components of a process that

together generate the response behavior in an experimental task. In the

specific case of a choice response task (like the semantic categorization

task) it makes sense to assume that there is more than one factor at work

in the response process at any given trial. In the model that we will use

(cf. infra), separate parameters are included for a person’s ability in the

task (i.e., their propensity to give a correct response, irrespective of the

item properties), but also of their carefulness and the speed with which

they are able to execute a motor response—all parameters that can rea-

sonably be taken to influence the eventual RT. Additionally, there are

separate parameters for the degree to which an item evokes a correct2 res-

ponse, and how long it takes to encode it before a semantic decision is

made. This allows for an analysis with a level of detail that is not possible

with conventional methods like the general linear model.

When applying such a cognitive process model, we will explicitly allow

for individual differences (both between participants and between items)

by embedding the model in a hierarchical structure. We will in other words

assume that while individuals (or items) are not identical in their cognitive

process parameters, they are all members of some superordinate popula-

tion. In this way, hierarchical models are a compromise between assuming

2It should be noted here that the accuracy of a categorization response can be somew-
hat subjective. For example, is a tomato a vegetable or a fruit? Is a raft a vehicle? For
the purposes of the present paper “true category membership” was determined a-priori
by the experimenters, but was kept uniform across the different data sets (see section
Data sets for more details).
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that all participants are interchangeable (Batchelder, 2007) and can hence

be averaged over (possibly leading to averaging artifacts; Estes, 1956, 2002;

Heathcote et al., 2000), and assuming that they share no commonality at

all. This hierarchical structure is a second (but equally important) way

in which our method improves upon the traditional approach. As an ad-

ditional feature of hierarchical models, we will be able to (attempt to)

explain part of the observed variance in parameters, through the use of co-

variate information (De Boeck & Wilson, 2004). Using a process model in

this fashion is sometimes called cognitive psychometrics (Batchelder, 2007;

Batchelder & Riefer, 1999).

5.1.2 Paper outline

The outline of the rest of the paper is as follows. In the next section, we will

briefly describe one data set (due to De Deyne, 2008) that contains speeded

semantic categorization data. Then we describe the so-called Leuven data

set (De Deyne et al., 2008) which contains many possible covariates of

the categorization time differences observed by De Deyne (2008). Then we

will analyze this joint data set using the classical approach (multiple linear

regression), but the results will turn out to be inconsistent and unclear.

In the section after that, we will describe the hierarchical diffusion models

(HDM) statistical framework (Vandekerckhove, Tuerlinckx, & Lee, 2008b)

which we believe is optimally suited for the analysis of this coupled data

set. Then we perform this analysis and discuss the results. We conclude

with a discussion of the application of process models for the purpose of

disentangling different sources of variability in choice RTs and implications

for semantic categorization studies.
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5.2 Data sets

5.2.1 Speeded semantic categorization data

The semantic categorization data are due to De Deyne (2008). The parti-

cipants were eight male and thirty-six female students of the University of

Leuven, who were paid the equivalent of $10 per hour for their participa-

tion.

Each of these participants provided speeded semantic categorizations

decisions for each of eight categories (birds, fish, insects, mammals,

musical instruments, reptiles, tools, and vehicles). All items that

were listed as exemplars of these categories in De Deyne et al. (2008) served

as targets in the experiment. As was noted before, an exemplar generation

task that was described in Ruts et al. (2004) informed the construction

of these lists. This resulted in the inclusion of some items that could

not be considered true category members (e.g., dolphin as an exemplar of

fish). De Deyne (2008) decided not to retain these items as targets for

his semantic categorization experiment. In addition, he excluded all items

that were composed of more than one word (e.g., adjustable spanner). For

each category the resulting targets were complemented by an equal num-

ber of distractors. For the natural kind categories (birds, fish, insects,

mammals, and reptiles) related items from the domain of animals consti-

tuted the distractors (e.g., platypus, lobster, amoeba, seahorse, and octopus

for the respective categories). For the artefact categories (musical ins-

truments, tools, and vehicles) related artefacts served the part (e.g.,

microphone, camera, and container for the respective categories).

All participants provided categorization decisions for all items. Ins-

tructions stressed both speed and accuracy. Following a recommendation

by Hampton (1997), De Deyne (2008) opted for a blocked presentation

order of categories. At the onset of a block, participants were informed
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about the category that would have to be referenced by displaying the ca-

tegory label for 3500ms on the screen. Those targets and distractors that

were assigned to that particular category were then presented one by one

in a randomized order. Each trial consisted of the presentation of a mask

(500ms), a fixation point (500ms), a blank (500ms), and the stimulus word.

The stimulus word was presented for a maximum of 1800ms or until the

participant responded by pressing one of two buttons on a response-box.

A blank screen (800ms) separated consecutive trials. Presenting the items

one at a time, blocked per category, should remove the random variance in

RT that would occur if a new category label had to be read on each trial.

Participants were familiarized with the procedure through the comple-

tion of a practice block. They then completed the experimental blocks in

a randomized order.

5.2.2 The Leuven data

In our introduction to the semantic categorization task we already provided

a brief overview of the variables that have been found to have an impact

upon participants’ performance. They are of a diverse nature, including

measures that pertain to semantic categories’ internal structure (e.g., Ty-

picality), the availability of the categories’ items (e.g., Word Frequency and

Familiarity) and the co-occurrence of category label and category items in

the categories’ learning history (e.g., Category Dominance and Production

Frequency). In order to disentangle the contributions of these variables to

task performance it is crucial that they are collected within a homogeneous

population, since cultural or regional differences are known to affect the

pattern of intercorrelations (Hampton & Gardiner, 1983; Larochelle & Pi-

neau, 1994). The Leuven data (De Deyne et al., 2008) meet this condition,

as all norms were collected within a few years’ time with University of Leu-
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ven students. They are therefore extremely well suited for the endeavor

at hand: the semantic categorization data collection by De Deyne (2008)

took place in the very same student population that provided the norma-

tive data and all target category members were selected from among the

Leuven norms (cf. supra). Hence, the available data allow an investiga-

tion of the differences that arise among true category members in speeded

semantic categorization.

Following Hampton (1997) we focused on five covariates to account

for these differences: Typicality, Familiarity, Word Frequency, Production

Frequency, and Word Length. All five variables are included in the Leuven

data and below we will briefly remind the reader how they were collected.

Although we agree with Hampton that these variables are generally of in-

terest in the speeded semantic categorization literature, the choice for this

set of covariates does not constitute a strong theoretical commitment of the

authors. Had the Leuven data included a measure of category dominance,

for instance, then we would have included it in our analyses. Nor should

the absence of variables like imageability or age of acquisition in our ana-

lyses be considered as a stance against their role in semantic processing.

Our choice for the named five variables merely reflects the aspiration of

demonstrating an approach that we believe to be valuable using a set of

theoretically justified variables.

5.2.2.1 Typicality (T )

The representativeness of a category’s items can be assessed in a variety of

ways. One of them requires participants to indicate on a Likert-type scale

how typical each category item is of the category. Students who provided

typicality ratings for the Leuven data, indicated on a scale ranging from

1 to 20 how typical they found each category member to be (De Deyne et
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al., 2008).

5.2.2.2 Familiarity (F )

Familiarity was assessed in a similar way. Participating students stepped

through a list of category items, indicating on a five point Likert-type scale

how familiar they were with each of the items. A rating of 1 indicated that

they had never seen, heard, or used the word before. A score of 2 indicated

that they had seen, heard, or used the word just once or twice. A score

of 3 indicated that they had sometimes seen, heard, or used the word. A

score of 4 indicated that they had seen, heard, or used the word often. A

score of 5, finally, indicated that they had seen, heard, or used the word

very often.

5.2.2.3 Word frequency (W )

A measure of item availability that is not based on participants’ judge-

ments, but on the frequency with which the item appears in written dis-

course, can also be obtained from the Leuven data. The reported word

frequencies in De Deyne et al. (2008) are the logarithmically transformed

lemma counts taken from the Dutch CELEX lexical database (Baayen,

Piepenbrock, & van Rijn, 1993).

5.2.2.4 Production frequency (P )

For each of the category members, the measure of production frequency

that is distributed with the Leuven data tallies how many out of a total of

120 student participants generated the member in response to the category

label. For the purposes of all following analyses, the production frequencies

were incremented by one and logarithmically transformed.
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5.2.2.5 Word length (L)

The variable word length finally, contains the number of characters in

each category member. The effect of this lexicographic variable is usually

of minor theoretical importance in accounts of semantic categorization and

therefore regularly overlooked (imprudently, as we will show).

5.2.2.6 Covariate preprocessing

Each of the covariates was transformed to a standardized scale with mean 0

and standard deviation 0.1. The distractor items (i.e., items that were not

true members of the target category) were included in the analysis after

the standardization (i.e., their covariate scores were not used to compute

the standard deviation of the covariate). For most covariates, we had no

information regarding these distractors, and they were assigned a value of

0 accordingly. Only for the variable Word Length (which is of course easy

to obtain) were the distractors given a value.

5.3 Regression analysis

We subjected the joint data set to a standard analysis: multiple linear

regression. For the present analysis, we removed all error responses and

all responses that were faster than 250ms or slower than 1800ms (which

was the experimental cut-off). Using the logarithm of RT as the criterion

variable, and Typicality T , Length L, Familiarity F , Word Frequency W ,

Production Frequency P , and category membership C as predictors, the

following regression model is obtained:

µ(pi) = β0 + β1T(i) + β2L(i) + β3F(i) + β4W(i)

+β5P(i) + β6C(i)

log(RT(pi)) ∼ N(µ(pi), σ
2).
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In this model, RT(pi) is the RT of person p (p = 1, . . . , 45) to item i

(i, . . . , I), µ(pi) is the predicted value of log(RT(pi)), and σ2 is the unex-

plained variance. Note again that since we only have covariate information

for target items, all covariates except Word Length L and Category Mem-

bership C take the value 0 for all distractor items.

The regression results are summarized in Table 5.1. We have imme-

diately performed inference on these results, and omitted all regression

weights that turned out to be not statistically significant. In this way, the

table concisely portrays the conclusions that would usually be drawn from

the data with respect to sign and significance. Unfortunately, even a cur-

sory inspection of Table 5.1 shows that the picture is inconsistent at best.

While the Typicality measure is traditionally found to have a negative ef-

fect on RT (i.e., higher Typicality leads to shorter RTs; Rips et al., 1973;

Rosch, 1973), in the present data set this effect only surfaces in three out

of eight categories. In two categories RT increased with Typicality, and

in the remaining three categories, no effect can be discerned. The Length

measure is the only one with effects that are consistent across categories,

but it only significantly increased RT in three categories. For Familiarity,

Word Frequency, and Production Frequency, the regression weights can

take either sign, depending on categories.

Retaining error responses or not removing fast and slow responses af-

fected the pattern of significance, but in no case did a consistent pattern

arise. Clearly, the classical analysis yields disappointing results. In the

next section, we introduce a process model for choice RT with which we

will reanalyze the present data.
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Table 5.1: Classical linear regression. The signs of the regression weights whose
p-value was less then 0.05 are displayed, others are replaced by a dot.

Category T L F W P

birds · · · · –
fish · · + + ·

insects + + – · ·
mammals – · · · +

musical instruments – + + – +
reptiles + + · + ·

tools · · · · +
vehicles – · + · ·

5.4 Hierarchical diffusion models

In the domain of choice RTs, models based on the Wiener diffusion process

have garnered significant attention (Ratcliff, 1978). The Wiener diffusion

model is one of the broad class of accumulator models where, in this case,

a single evidence counter evolves over continuous time until it hits one of

two absorbing boundaries. The time to absorption is then related to the

RT and which boundary was hit indicates the response given. The model

is considered particularly interesting because the parameters that drive

the process (explained below) have intuitive interpretations relating to the

sequential accumulation of information.

The increasing popularity of the diffusion model for choice RTs is li-

kely due in part to the interesting interpretations of its parameters on the

one hand, and the model’s ability to naturally account for many empiri-

cally observed phenomena on the other (for an excellent review of recent

advances with the diffusion model, see Wagenmakers, in press). It is un-

fortunate, therefore, that the possibilities for application of the diffusion

model have thus far been somewhat limited. For example, as noted by
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Wagenmakers (in press), fitting the diffusion model to empirical data re-

quires a large number of observations. Importantly, with the methods

currently in practice (Ratcliff & Tuerlinckx, 2002; Vandekerckhove & Tuer-

linckx, 2007, 2008; Voss & Voss, 2007) it has typically been necessary to

have an appreciable number of data points in each cell of the experimental

design. That is, some independent replications under invariant conditions

are required in order to obtain parameter estimates.

As a result, applications of the diffusion model have largely been li-

mited to the analysis of “long” data sets (i.e., a typical psychophysical

design where there are few participants, and many repeated trials for each

participant and in each condition). A little-explored alternative would

be to apply it to “wide” data sets with many participants and few re-

peated measurements (like the present semantic categorization data set;

Hampton, 1997, recommends against repeating items in such a paradigm).

Such analyses are more challenging for several reasons. For example, if

all participants are analyzed independently of one another, the available

number of data points on which the estimates would be based would be

very low. On the other hand, it would be unreasonable to keep many para-

meters constant across individuals, making it impossible to pool the data

together (i.e., to allow sharing of information between data from different

participants). Other methods of pooling data across participants (or, for

that matter, items), such as quantile averaging (or vincentizing ; Ratcliff,

1979; Rouder & Speckman, 2004), come with preconditions that may not

be met by the diffusion model (i.e., same location-scale family; Thomas &

Ross, 1980), they do not permit an investigation of individual differences

(in which we might be interested), and they cannot be applied in the case

where individual differences are expected on both the person and the item

side (i.e., if both persons and items are random draws from their respective

populations, and there are no repetitions of person-by-item combination
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trials, then there are no distributions left to combine). Taking the statis-

tically principled route of treating participants as random samples from

a population (random effects approach to individual differences) typically

leads to models that rapidly become quite complex mathematically.

Ratcliff (1978), Laming (1968), and Link and Heath (1975) have al-

ready approached part of this problem with a random-effects strategy, by

allowing trial-to-trial variability in model parameters. Effectively, it is as-

sumed that some parameters change over time in that they are, at each

point in time, a random sample from some higher-order distribution. Pa-

rameters of this superordinate distribution are then estimated in lieu of

the trial-specific parameters themselves. In practice, the variability in a

parameter is implemented by multiplying the model’s likelihood function

with the likelihood function of the trial-to-trial variability and then inte-

grating over the parameter(s) that is (are) allowed to vary (see Ratcliff

& Tuerlinckx, 2002; Tuerlinckx, 2004). However, this method is compu-

tationally laborious (involving multidimensional integrations that have to

be approximated by sums) and somewhat inflexible (in the sense that the

likelihood function has to be adapted in such a way that makes it difficult

to write a universal but efficient algorithm).

Recently, Vandekerckhove et al. (2008b) have provided a solution to

this problem by applying the flexibility of Bayesian hierarchical modeling

(see, e.g. Rouder & Lu, 2005; Rouder, Lu, Speckman, Sun, & Jiang, 2005;

Rouder et al., 2007 for some examples of Bayesian hierarchical modeling)

to the Wiener diffusion process. This statistical framework (HDM) can

easily cope with many simultaneous random effects, and software for its

implementation is freely available (Vandekerckhove et al., 2008b). A diffu-

sion model with crossed random effects can be applied to a data set where

there are no repeated observations in the item-by-participant cells of the

experimental design. Such a design would be inaccessible to typical process
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model approaches, but it is important in order to account for the random

sampling scheme that is normally used for lexical items in the semantic

categorization paradigm (Clark, 1973; Coleman, 1964) as well as partici-

pants. This crossed random effects diffusion model is especially suited for

this case, because other methods that are typically used for dealing with

uncontrolled variability (e.g., vincentizing) cannot cope with the crossed

random effects design without repeated observations of each cell of the de-

sign. Additionally, even if it were possible to have repeated observations

of the same person/item combinations (this is not recommended in the

semantic categorization context according to Hampton, 1997, but it might

be possible in other cases), then the vincentization procedure would only

allow us to account for the variability. It does not permit an easy quanti-

fication of the variability, nor would it allow us to attempt to explain the

variability through external covariates (De Boeck & Wilson, 2004).

5.4.1 Diffusion models

At the basis of the Wiener diffusion model is a random walk process in

continuous time and with a continuous state space. The random walk has

two boundaries at values α (“upper”) and 0 (“lower”) and its step-size

over a discrete time period t is a randomly drawn value from N
(

δt, σ2t
)

(Feller, 1970). By convention, σ = 0.1. After a number of steps, the pro-

cess will hit one of its boundaries (see Fig. 5.1). If δ, called the drift rate

(or drift for short), is high in absolute value, then the number of steps will

be small. The boundary that was hit is then linked to the response given,

and the first passage time (i.e., the number of steps taken to reach the

boundary) relates to the RT. By convention, a hit at the upper boundary

(α) is linked to correct responses and a hit at the lower boundary (0) is
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an error.3 Of prime interest in the modeling of choice reaction times are

the proportions with which the absorbing boundaries are hit, as well as

the predicted first passage time distribution at either boundary. The two

parameters of this model (sometimes also called the drift diffusion model)

have straightforward interpretations. Boundary separation α relates to the

amount of information that is required to make a decision—that is, it indi-

cates the caution level of the decision system (in this case the participant).

We will therefore usually let α be different for different persons (but iden-

tical across experimental blocks, because we do not expect people to adapt

their caution level in the middle of an experimental block). The second

parameter, drift rate δ, is the speed of information accumulation. We can

easily suppose this to depend both on the participant (who may be more

or less able to rapidly process information) and on the item (which may

be relatively rich or poor in information content)4.

Typically two more parameters are introduced to the unbiased drift

diffusion model. Firstly, a bias parameter to indicate that the starting

point of the process may be closer to 0 or to α. This parameter is β ∈
[0, 1], so that the starting value of the process is exactly αβ. Secondly,

a shift parameter τ is added to represent RT components that are not

part of the decision time (e.g., encoding the stimulus and executing the

motor response). The nondecision time is assumed to be stochastically

3This convention can be adapted. We could for example say that the upper boundary
indicates a category affirmation response and the lower is connected to a category nega-
tion. However, the interpretation of the parameters would then change: a high drift rate
would no longer evoke a correct response, but rather the category affirmation response,
whether correct or not.

4In principle, it would also be possible that some participants have a better affinity
with some items, resulting in a person-by-item interaction. Such an interaction could
be most interesting when, for example, comparing groups of participants with different
levels of experience with a certain semantic category (e.g., comparing ichthyologists with
laymen in their categorization performance of fish). However, including a person-specific
interaction would require more than one replication of each person-by-item combination,
which the present data set does not offer.
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Figure 5.1: A graphical illustration of the Wiener diffusion model.

independent from the decision time. The joint probability density of the

RT and accuracy (i.e., the Wiener likelihood function, or its probability

density function, PDF) is given in Tuerlinckx (2004), and we denote it

with WX,T (x, t|α, τ, β, δ), where the random variables X and T represent

the response given and the response latency, respectively. Instances of X

and T will be denoted as x and t.

5.4.2 Hierarchical extension

In a hierarchical diffusion model (HDM; Vandekerckhove et al., 2008b),

the four parameters that drive the response process are considered random

draws from some partly specified distribution (Rouder et al., 2005) that

may be subject to many different influences. For example, it may be

assumed that the drift rate δ(i) of the response process at trial i is a random

draw from a normal distribution with mean ν and standard deviation η:

δ(i) ∼ N
(

ν, η2
)

.
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The parameters of this distribution can in turn be considered random

draws from some higher-order distribution, or they may be seen as some

fixed function of other parameters or of data. The multitude of combina-

tions that are possible make the HDM framework an exceedingly flexible

method for the analysis of two-choice RT data.

5.4.3 Bayesian implementation

Obtaining parameter estimates in such a flexible context would be quite

challenging in general. Finding the maximum-likelihood parameter esti-

mates for a random-effects diffusion model would require repeated compu-

tations of a multidimensional integral over the (already nontrivial) Wiener

distribution. However, the inclusion of randomly varying parameters and

integrating over their distributions is the basic modus operandi in Baye-

sian statistics. Hence, casting the HDM in a Bayesian statistical framework

(bulding upon Vandekerckhove, Tuerlinckx, & Lee, 2008a) allows us to ap-

ply the model easily. In the next section, we will specify a specially-tailored

HDM, which we will then apply to the Leuven data set.

5.5 Analyzing the Leuven data

5.5.1 Model assumptions

Formally speaking, a statistical model is little more than a set of assump-

tions regarding structure that is present in the data. We discern five dif-

ferent types of assumptions in the present model, which we describe in

turn. We will apply this model to each category separately.
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5.5.1.1 The measurement model

At the most basic level, our assumption is that each data point is generated

by a diffusion process whose parameters may differ between persons and/or

items (i.e., words). We have chosen to allow boundary separation α to

differ between persons p, while nondecision time τ and drift rate δ may be

different for each item-by-person combination pi. Since we do not want to

assume that participants have an a-priori bias for the correct or erroneous

responses5, we fix the bias β to 0.5 for the remainder of this presentation.

Formally, the measurement model is written as follows:

(t(pi), x(pi)) ∼ W (α(p), β, τ(pi), δ(pi)).

This gives the expected distribution of data point (t(pi), x(pi)) (for person p

on item i) given all the relevant parameters. W is the Wiener PDF. Note

that, as mentioned in an earlier section, we do not let boundary separation

α depend on items, so it does not receive an index i.

5.5.1.2 Trial-to-trial variability

Parameters τ and δ are assumed to vary both between persons and bet-

ween items (and hence from trial to trial). For this random variability,

we assume a normal distribution, which is the most common assumption

in hierarchical modeling (e.g., De Boeck & Wilson, 2004) and we see no

reason to deviate from it here.6 The normal also serves as a useful first

approximation. In both cases, we allow the mean of the trial-to-trial distri-

5We can safely assume this, since there were 50% targets and 50% distractors in each
block of the experiment.

6In principle, one could object that τ cannot follow a normal distribution, as it can
never be negative, but in practice the mean (θ) of this distribution has always turned
out to be very large compared to its standard deviation (φ), so that the mass of this
distribution below zero can be safely ignored.
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bution to depend on both persons and items. The dependence on persons is

simply to allow for interindividual differences (which we believe exist), but

the dependence on items is crucial in order to explain interitem differences

with the Leuven covariates. Formally:

δ(pi) ∼ N(ν(pi), η
2
(p))

τ(pi) ∼ N(θ(pi), φ
2
(p)).

It can be seen that we also allow for the possibility of different trial-to-trial

variances between persons.

5.5.1.3 Independent item and person contributions

As explained in the previous section, we want items and persons to have

independent effects on two different aspects of the decision process. For

the drift rate δ(pi), we call the item and participant contributions λ(i) and

γ(p), respectively. For the nondecision time τ(pi) we call them ψ(i) and χ(p).

In both cases, we assume these to be independent and additive (this is a

typical construction in psychometrics; for example the Rasch model uses

the same assumption; De Boeck & Wilson, 2004):

ν(pi) = γ(p) + λ(i)

θ(pi) = χ(p) + ψ(i).

5.5.1.4 Population distributions

Since both items and participants were random samples from a larger po-

pulation, a random effects design is appropriate. Those parameters that

have a population distribution are thus assigned population-level parame-

ters. Two distributions over the item population must be defined: that of

the item contribution to the drift rate (i.e., λ(i)) and of the item contri-
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bution to the nondecision time (i.e., ψ(i)). These components again get

normal population distributions:

λ(i) ∼ N(µλ(i), σ
2
λ(i))

ψ(i) ∼ N(µψ(i), σ
2
ψ).

Note that, since we expect the drift rates for targets and items to be quite

different, we also allow their population variances to be different.

For reasons of model identifiability, the mean of one of the random

components must be constrained, so we set the mean of γ(p) and χ(p) to 0:

γ(p) ∼ N(0, σ2
γ)

χ(p) ∼ N(0, σ2
χ).

Finally, we define a population distribution for the boundary separation

α:

α(p) ∼ N(µα, σ
2
α).

5.5.1.5 Regression structure

We make most of the previous assumptions in order to account for the

possibility of variation between persons or items. Until now, however, the

model is strictly descriptive (i.e., it does not include any external covariates

that might be employed to explain the variability that is observed). A

final set of assumptions pertains to the relationship between the diffusion

model parameters and the Leuven data set. Following Hampton (1997),

we include five covariates: Typicality (T ), Word Length (L), Familiarity

(F ), Word Frequency (W ), and Production Frequency (P ). All of these

covariates were standardized to have a mean of 0 and a standard deviation

of 0.1. As in the regression analysis we showed before, we also add the

item’s category membership as a predictor (i.e., C(i) = 1 if the item was a
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target, C(i) = 0 if it was a distractor). We call the regression weights ζ for

the drift rate and ρ for the nondecision time:

µλ(i) = ζ0 + ζ1T(i) + ζ2L(i) + ζ3F(i)

+ζ4W(i) + ζ5P(i) + ζ6C(i)

µψ(i) = ρ0 + ρ1T(i) + ρ2L(i) + ρ3F(i)

+ρ4W(i) + ρ5P(i) + ρ6C(i).

In principle, we could do the same for the person contributions to the drift

rate or nondecision time, or for the caution parameter α. For example, in-

telligence might predict the drift rate component (see e.g., Ratcliff, Schmie-

dek, & McKoon, 2008) or neuroticism might be connected to the caution

parameter. Unfortunately, the present data sets do not include person

covariates.

5.5.2 Results

The model we have presented is an instance of a hierarchical diffusion

model. Software to implement such a model was made available by

Vandekerckhove et al. (2008b, “wienereta.odc”). Using this software, we

obtained posterior distributions for each of the parameters in the model.7

The posterior distributions for ζ, per semantic category, are displayed

in Fig. 5.2, and those for ρ are in Fig. 5.3. These posterior inference

plots may be read as follows. In each of the subplots, the five horizontal

lines represent the posterior distributions of the regression weights of the

five Leuven covariates. The lines indicate the Bayesian credibility interval

(BCI): the region around the mean that contains 95% of the mass of the

parameter’s posterior distribution. The diamonds indicate the posterior

7We followed the recommendations made by Vandekerckhove et al. (2008b) to check
for convergence issues and found that there were none (all convergence statistics R̂ <
1.05, all chains show proper mixing).



5.5 Analyzing the Leuven data 239

Table 5.2: Regression weights in the HDM. The signs of the regression weights
whose 95% credibility intervals do not contain 0 are displayed, others are replaced
by a dot.

ζ ρ

T L F W P T L F W P

birds + – · – · · · · · ·
fish · · – · + · · · · ·

insects + · · · · · + · · ·
mammals + + · · · · + · · ·

musical instruments · · · · · · · · · ·
reptiles + – · · · · + · · ·

tools + · · · · · + · · ·
vehicles + · · + – · + · – ·

means. The vertical line is the value 0. In these figures, two patterns

emerge quite clearly: the effect of Typicality (T ) on drift rate is always

positive, and most of those BCIs do not include 0. Similarly, in Fig. 5.3,

Word Length (L) generally has a positive effect on nondecision time.

To compare these results to the ones obtained from the standard ana-

lysis in Table 5.1, we constructed a similar table for these two sets of

regression weights. We display the sign of a regression weight if its 95%

credibility interval does not contain 0 (i.e., with 95% probability the pa-

rameter is not 0). In contrast with the classical analysis, results here

are predominantly consistent—for the drift rate regression, only Typica-

lity consistently shows up as a good predictor. For the nondecision time,

Word Length has a consistent influence. In both cases, the sign of the

regression weight is as expected.8

Fig. 5.4 shows the relationship between the Typicality score of an item

8The present analysis is based on a multiple regression. In one alternative attempt,
we restricted ourselves to univariate regressions (i.e., including one covariate at a time),
and obtained comparable results.
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Figure 5.2: Posterior inference plots for the regression weights ζ (the regression
weights for the λs, the item contributions to the drift rates). See text for details.
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Figure 5.3: Posterior inference plots for the regression weights ρ (the regression
weights for the ψs, the item contributions to the nondecision times). See text for
details.
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Figure 5.4: An example regression result. Drift rate on average increases with
increasing Typicality. Item bat is a clear outlier on both dimensions. The dotted
lines indicate the mean Typicality and mean drift rate. To avoid confusion: the
values on the vertical axis are the total drift rates assuming an average person
with γ(p) = 0.

and its contribution to the drift rate (depicted for an average participant;

i.e. γ(p) = 0) in the category mammals. A somewhat linear relationship

is evident9, and we have labeled some of the items on the graph. Item bat

has the lowest Typicality rating, and also the lowest drift rate. Items dog

and lion reside on the opposite side of the spectrum.

While some of these effects are very easy to interpret, others are less

intuitive. In Fig. 5.5, we display the effect that drift rate has on the raw

data. We selected three items from the range of Typicality ratings (from

the mammals category) and display the expected distribution of their

(correct) RTs and their expected accuracy scores.

9The linear relationship is clearly not perfect, and perhaps even better prediction
could have been achieved with a non-linear regression, but we do not explore that avenue
here.
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Figure 5.5: The effect of higher Typicality (and hence higher drift rates) on
the raw data. RT distributions become more compact and less skewed (smaller
mean, smaller variance) as Typicality (drift rate) increases. Accuracy increases
with higher Typicality. The PDFs are marginal PDFs (i.e., conditional upon a
correct answer) and have been normalized so that they integrate to 1).

The interindividual variability is also notable. In particular, the person-

specific α parameter that represents a person’s caution shows much varia-

tion. Fig. 5.6 shows the effect of different boundary separations (keeping

all other factors constant). We selected three participants from the popu-

lation (corresponding to the 10th, 50th, and 90th percentiles) and plotted

their expected raw RT distributions and accuracies (for an average item).

The range of α values in the population has a small but noticeable effect

on both the RT distribution and the accuracy scores.

The effect of Word Length is, from a research methods point of view,

perhaps the most important to keep in mind (we will elaborate on why

we believe this is so in the Discussion section below). Fig. 5.7 shows the

relationship between Word Length and nondecision time for the category

tools (here, too, the effect might be better captured by a non-linear regres-

sion). The nondecision times associated with particular items range from

500ms to 630ms—the interquartile range is more than 60ms. A graphical

presentation for this effect (like the ones in Figs. 5.5 and 5.6) would show
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Figure 5.6: The effect of higher boundary separation on the raw data. P19 has
a high α, P44 has a median value, and P45 has a low α. RT distributions become
more skewed with increasing α, but accuracy increases. The PDFs are marginal
PDFs (i.e., conditional upon a correct answer) and have been normalized so that
they integrate to 1).

identical accuracy scores and identically shaped RT distributions, but shif-

ted to the right for items with higher values of ψ(i). For interpretation, we

can compute that, on average, adding one letter to a word shifts the RT

by 7–12ms, depending on the category.10

Finally, we can compare differences between participants with diffe-

rences between items. Table 5.3 shows population standard deviations

from the HDM (the values shown are the means of the posterior distri-

butions of the parameters). Comparing the drift rate’s variability due to

persons (σγ) with its variability due to item differences (σλ(1) for targets11,

σλ(2) for distractors), we can see that, with the exception of the category

fish, the item variance is always much larger than the person variance.

The reverse is true for the nondecision time: residual item variance there

is much smaller than the variance in the person population.

10This is in line with results from Hampton (1997).
11Note that this is the residual item variance, after correcting for all the covariates.
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Figure 5.7: Nondecision time in the category tools on average increases with in-
creasing Word Length. The dotted lines indicate the mean Word Length and mean
nondecision time. The values on the vertical axis are the total nondecision times
(assuming an average person with χ(p) = 0). Word Length has been jittered to
avoid overlapping symbols. The original Dutch versions of the labeled items were
(from left to right): zaag, schop, boormachine, staalborstel, and schroevendraaier.

5.6 Discussion

The theoretical advantages of using a process model on the one hand and a

hierarchical model on the other (together leading to a cognitive psychome-

tric model) were extensively described in the introduction. However, the

demonstration in the present article also shows the practical applicability

of this method.

We believe that, as a methodological advance, the HDM framework

(Vandekerckhove et al., 2008b) can contribute not only to semantic cate-

gorization studies, but to a more general class of paradigms. If speeded

binary choice RTs are collected, and if it is likely that there are interin-

dividual (or interitem) differences, then the HDM framework might prove
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Table 5.3: Population variability parameters in the HDM. We can compare the
person variabilities with the item variabilities (see text for details). All values are
standard deviations.

boundary
separation

nondecision
time

drift rate

σα σχ σψ σγ σλ(1) σλ(2)

birds 0.018 0.067 0.023 0.025 0.077 0.115
fish 0.013 0.084 0.035 0.122 0.057 0.176

insects 0.022 0.064 0.024 0.018 0.113 0.229
mammals 0.024 0.067 0.023 0.019 0.069 0.085

musical
instruments

0.021 0.058 0.020 0.093 0.091 0.157

reptiles 0.024 0.091 0.029 0.022 0.106 0.247
tools 0.015 0.081 0.020 0.021 0.078 0.148

vehicles 0.020 0.056 0.026 0.025 0.093 0.164

useful.

In the introduction, we have also referred to Estes’ (1956, 2000) view

on individual differences and how averaging over participants (or items)

may lead to averaging artifacts. Hierarchical modeling deals with this

issue in a practical and efficient way. In the domain of choice RTs, a

different type of artifacts may occur if variability in the various facets

of the response process are ignored. In the particular case of the HDM,

variability in the nondecision process time (i.e., encoding and processing

time) can easily be confused for variability in the decision process time.

Indeed, past analyses of semantic categorization data have found effects

of word length on RT, but the present analysis strongly suggests this to

be an artifact—word length does not predict the information uptake rate,

but rather the encoding time of the process. However, accounting for this

variability in nondecision time is important to achieve proper parameter

estimates.
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5.6.1 Implications for semantic categorization studies: item properties

The model of speeded semantic categorization we have introduced is very

explicit about the various stages involved in making a category membership

decision towards a visually presented verbal stimulus. We believe that

we have convincingly shown that elaboration of the aspects involved in

arriving upon that decision is a useful practice. By attributing the effects

of typicality and word length to different aspects of the response process,

we have moved beyond the common practice of regressing these covariates

upon the observed RTs. The very nature of the latter approach confines

it to the mere establishment of the relative effect of both covariates upon

RT. The former approach allows the effect to be attributed to specific

components of the RT.

The critical reader might raise the objection that we have not been

explicit enough in our account of the categorization behavior, and might

point out that for those among us who are interested in understanding se-

mantic cognition the question “what governs semantic categorization time

differences” has shifted towards “what governs information uptake diffe-

rences”.

In response to this objection we readily admit that, indeed, we have

been less than explicit about the representation upon which the accumula-

tor process acts. We have not committed ourselves, for instance, to featural

representations of the kind Smith et al. (1974) or McCloskey and Glucks-

berg (1979) have argued for. Nor did we attempt to attempt to link the

accumulation process to the semantic markers that were proposed by Glass

and Holyoak (1974). Although the terminology we have used throughout

this manuscript (e.g., information uptake, accumulation of evidence) might

tempt the reader into thinking that the diffusion model is more in favor of

a successive comparison of exemplar and category features than of an or-
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dered search through semantic markers, we do not necessarily believe this

to be the case. Any representational format that allows for a stochastic

accumulation of evidence for or against the endorsement of an item as a

category member is in principle compatible with the diffusion model we

propose. This does not imply that the methodology we have proposed in

this manuscript can not be brought to bear upon the representational is-

sue. In much the same way as we have explored the relative contributions

of different covariates to the degree of information uptake, one could eva-

luate the predictions of rivalling representations, providing that they are

explicit enough to warrant quantification. One might consider using the

Leuven data again for such endeavors as they include plenty of information

on the intension and extension of semantic categories.

For now, however, we dare suggest that casting speeded semantic ca-

tegorization decisions in terms of a diffusion model constitutes sufficient

explicitation. As we have pointed out in the Introduction, much of the

efforts during the last three decades have been aimed at disentangling the

various constructs that are likely to influence semantic categorization. As

it is along the lines of these constructs that theories of semantic behavior

are likely to develop, tools that shed light on the varying manners in which

they exert their influence are valuable. At the very least, we hope to have

shown that the diffusion model is able to accomplish this.

In the near future we hope the model will allow us to study the effects

of variables that are present in the Leuven data, but were not incorporated

in the current analyses for reasons of brevity. The questions of whether

age of acquisition exerts an effect in semantic categorization, and how that

effect might come about, for instance, deserve some attention as they have

generated considerable debate (Brysbaert, Van Wijnendaele, & De Deyne,

2000; De Deyne & Storms, 2007; Morrison, Ellis, & Quinlan, 1992; Mor-

rison & Gibbons, 2006). We also hope to study the impact category do-
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minance has on the categorization performance participants display. This

will require the collection of additional data as the Leuven norms do not

include a direct measure of the association strength between an item and

its superordinate(s). (See De Deyne & Storms, 2008 for a discussion of the

differences between the direct or constrained measures of category domi-

nance that are mostly used in the semantic categorization literature and

the unconstrained measure that can be found in the Leuven norms). These

and other investigations will undoubtedly benefit from experimental ma-

nipulations that are supposed to influence the effect a particular covariate

has on the distribution of one of the model’s parameters, but not on that

of others (Hampton, 1997).

5.6.2 Implications for semantic categorization studies: person properties

In the Results section we already indicated that our analyses demonstra-

ted evidence of interindividual variability in semantic categorization be-

havior. Namely, the person-specific α that represents a person’s caution

showed considerable variation with accompanying effects on the degree to

which true category exemplars were endorsed as such (see Fig. 5.6 for a

demonstration). These differences between persons reflect (more or less)

imprudent task strategies resulting in (more or fewer) erroneous decisions.

It has been demonstrated a number of times (e.g., Hampton, 1998, 2007;

McCloskey & Glucksberg, 1978) that people disagree considerably about

the items they consider to be true members of a semantic category. The

degree to which people disagree is likely to be reflected in the variation of

the α parameter.

As De Deyne (2008) did not record any information on the students

participating in the semantic categorization task but their age and gen-

der, our assumptions regarding the person side of the diffusion model have



250 Chapter 5

remained strictly descriptive (i.e., no external covariates that might be

employed to explain the interindividual variability that was observed were

available). Looking at recent applications of the speeded semantic cate-

gorization task, in which the decisions of individuals with autism were

compared with those of matched controls (Gastgeb, Strauss, & Minshew,

2006) or the differences in categorization behavior by Broca’s and Wer-

nicke’s aphasic individuals were investigated (Kiran & Thompson, 2003),

it seems that the approach argued for in this manuscript can also prove to

be valuable when applied to person properties instead of item properties.

One can image proposing a diffusion model of speeded semantic categoriza-

tion in which person variables are regressed upon the model’s parameters

or a model whose parameter distributions are allowed to differ from one

group to another. Along these lines we have begun to compare the ca-

tegorization behavior of individuals displaying many schizotypal traits to

that of individuals who display few schizotypal traits. The difference in

the degree to which individuals in the general population display these

traits is thought to accompany their willingness to endorse weak semantic

associates as true category members (Kiang & Kutas, 2005, 2006). Hence,

we would expect that in the diffusion model analysis participants scoring

high on schizotypy would demonstrate a greater bias β towards the target

than participants who obtained a low score.
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