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Abstract

I describe a cognitive latent variable model, a combination of a cognitive
model and a latent variable model that can be used to aggregate information
regarding cognitive parameters across participants and tasks. The model is
ideally suited for uncovering relationships between latent task abilities as
they are expressed in experimental paradigms, but can also be used as data
fusion tools to connect latent abilities with external covariates from entirely
different data sources. An example application deals with the structure of
cognitive abilities underlying an executive functioning task and its relation
to personality traits.
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Introduction

Cognitive psychometrics

Cognitive psychometrics is the term coined by Batchelder (1998) to describe the ap-
plication of cognitive process models as assessment tools, or, more fundamentally, to apply
the psychometrics of individual differences to cognitive process parameters. The practice of
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combining cognitive measurement models with individual variability, implemented as sta-
tistical random effects, serves in the first place to adapt cognitive models to the reality of
randomly sampled, noninterchangeable participants (e.g., Batchelder, 2007). As has been
pointed out by Estes (1956, 2002), Hamaker (2012), and Heathcote, Brown, and Mewhort
(2000), averaging artefacts can lead to biased estimates and errors in inference. More than
that, however, the assumption that an individual’s process parameters are in fact a ran-
dom draw from some superordinate population distribution introduces a crucial new aspect
to cognitive modeling: The idea that there might be formal structure to be derived from
the individual differences researchers often observe among participants’ cognitive model
parameters.

Structured individual differences are a critical concept in certain fields of cognitive
science. For example, intelligence research is dominated by studies in which individuals are
assessed on a variety of tasks, and it is typically observed that participants who score high
on one task also score high on other tasks (e.g., Kamphaus, Petoskey, & Morgan, 1997).
This covariance is taken to imply that there exists a small set of person-specific abilities
that jointly give rise to correlated behavior on the larger set of tasks (a “positive manifold”).
An identical approach is often taken in fields such as working memory (e.g., Oberauer, Süß,
Schulze, Wilhelm, & Wittmann, 2000) or executive functioning (e.g., Miyake et al., 2000),
where unobserved factors supporting stable differences across individuals are inferred from
the correlational pattern between multiple basic tasks. This type of data analysis is widely
known as latent variable modeling (Bartholomew, Knott, & Moustaki, 2011; Skrondal &
Rabe-Hesketh, 2004).

Importantly, the interpretability and usefulness of the results of such analyses depend
on the interpretability of the quantities measured in the basic tasks. If each score in a given
set of tasks can reasonably be thought to tap intelligence, then it is valid to conclude that
the inferred latent factors relate to intelligence as well. If, on the other hand, scores in
the basic tasks are nonlinear amalgams of more elementary variables, interpretation of the
latent factors is complicated. Cognitive models serve to decompose such complex data into
interpretable parameters. The modeling strategy proposed in this paper involves—within a
single model—a latent variable structure built on top of a cognitive process model, to allow
inference of latent variables that have cognitive interpretations.

A qualitatively different type of conclusion

When latent variable models are combined with cognitive models to form a cognitive
latent variable model (CLVM), this affords a qualitatively different type of conclusion from
either classical psychometrics or classical cognitive modeling. For example, using a cognitive
model with a parameter interpreted as speed of information processing (e.g., the drift rate
in a diffusion model Ratcliff, 1978), a CLVM permits inferences about unobserved variables
that contribute to the total rate of information processing in a particular task. A con-
ventional psychometric model would not permit such process-based conclusions, whereas a
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conventional cognitive model would not be equipped to infer higher-order latent properties.
Combining cognitive models with latent variable models allows us to bridge the gap

between experimental and individual-differences research—a long-standing issue in psychol-
ogy since Cronbach’s (1957) lament that the science is split across two disparate disciplines,
reiterated more recently by Borsboom (2006). It is the aim of the present paper to present
an example of a CLVM, a formal model that extends the logic of cognitive psychometrics
to include latent variable structures.

The structure of the paper is as follows. The next section will introduce two com-
ponents of the CLVM: the diffusion model as a cognitive model of choice response time
data and the factor analysis model as a measurement model to tie multiple tasks together.
This section will also introduce some required notation. The section after that will focus
on properties of the integrative CLVM. After that, a short section will be devoted to the
relevant details of Bayesian inference and model selection. Finally, a section will provide
detail regarding the application of the CLVM in the field of emotion psychology.

Diffusion models for two-choice RT

The data level of this CLVM consists of a probabilistic representation of data as they
are predicted by a particular cognitive model—the sampling scheme of the data. The cogni-
tive model used here is a simplified diffusion model for two-choice RT (Stone, 1960), which
has been very popular in cognitive science (see Wagenmakers, 2009, for an overview of re-
cent applications and advances), with applications ranging from memory (Ratcliff, 1978)
and low-level perception (Ratcliff & Rouder, 1998) to semantic cognition (Vandekerckhove,
Verheyen, & Tuerlinckx, 2010) and emotion psychology (Pe, Vandekerckhove, & Kuppens,
2013; White, Ratcliff, Vasey, & McKoon, 2009). The diffusion model is based on the prin-
ciple of sequential accumulation of information—it assumes that a decision making system
samples small units of information, sequentially over time, from whatever stimulus to which
it was exposed. These sampled units of evidence are aggregated with information already
accumulated. After each accretion step, the system evaluates whether the total amount of
evidence warrants the making of a decision. If so, the process ends and a response is exe-
cuted. This accumulation process is the fundamental assumption—the “central dogma”—of
a broad and highly successful class of sequential sampling models for RT.

More specifically, the process assumptions of the diffusion model are that a single
evidence counter accumulates towards one of two decision boundaries, with a starting point
that may be closer to one boundary than the other. Figure 1 illustrates the process. Given
the freedom of two decision bounds, the model can account for two distinct types of bias
in the response process. In addition to biased processing of information (which is reflected
in the average rate of evidence accumulation, a parameter called the drift rate, δ), the dif-
fusion model allows for an a-priori bias that is prior to and independent of the information
accumulation process (here parameterized as a proportion, so that a bias β = 0.5 implies
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Figure 1 . An illustration of the Wiener diffusion model. Evidence is accumulated over the (horizon-
tal) time dimension, at an average rate of δ. The decision process terminates if the evidence value
reaches 0 or α, and the amount of evidence at the onset of the trial is given by αβ. The nondecision
time τ reflects independent additive processes such as stimulus encoding and response execution.
Equation 1 describes the reaction time distributions that follow from these model assumptions.
Figure adapted with permission from Vandekerckhove (2009).

a-priori indifference). The distance between the decision bounds (known as the boundary
separation α) performs a separate, interesting task in the diffusion process. Bounds that
are close together lead to fast decisions that are largely independent from the information
contained in the stimulus (i.e., close to chance level), whereas distant bounds lead to slow
response processes whose outcome is mostly determined by the direction of the accumula-
tion process (i.e., if δ is positive and α is high, the upper boundary is likely to be hit). This
parameter hence captures the well-known speed-accuracy trade-off. The fourth and final
parameter of the diffusion model is the nondecision time τ . This shift parameter deter-
mines the leading edge of the latency distribution, and is typically interpreted as the sum
duration of all non-decision processes (and it is additionally assumed that these processes
are independent of and serial to the decision process).

The PDF of the Wiener diffusion model is bivariate (with one dimension for the
latency and one for the binary choice); its analytical form also contains an infinite sum and
the latency distribution can therefore at best be approximated:
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Figure 2 . A graphical model representation of a Wiener diffusion model without a-priori response
bias (i.e., β = 0.5). In this representation, to-be-estimated variables are shown as plain circles and
data have shading. Arrows indicate “is-parent-of” relationships, with parent nodes determining the
distribution of child nodes. The p-plate indicates independent repetitions over P participants, t over
T conditions, and i over I trials.

Fortunately, efficient methods for the computation of the Wiener diffusion model
density and distribution functions exist (Blurton, Kesselmeier, & Gondan, 2012; Navarro
& Fuss, 2009, for the CDF and PDF, respectively), making it a highly tractable model.
Equation 1 lacks a diffusion coefficient parameter, which is sometimes used to scale the
evidence dimension (and typically denoted s); the coefficient does not appear because it
will be set to 1 in all applications, and it cancels out everywhere.

Figure 2 shows a graphical model representation of an unbiased Wiener diffusion
model for a data set where P participants do a task with T conditions and I trials in each
condition. For conciseness, y denotes a choice RT pair (t, x). The equations to the right
of the diagram list the distributional assumptions of the model, including some example
priors.

It is important to note that this data model can serve a dual purpose for researchers
in psychology. On the one hand, researchers can decide to buy in to the assumptions of the
model—taking the process as given and drawing conclusions that may hinge on the accuracy
of these assumptions. For this particular cognitive model, the literature contains reports of
experimental manipulations that selectively affect model parameters, lending some credibil-
ity to the process assumptions (e.g., Voss, Rothermund, & Voss, 2004). However, the model
would remain useful even if one is unwilling to buy in to the exact process—by taking the
model as a convenient data level that captures the shape of the data and serves strictly as
a parsimonious description.

Latent predictors—the third building block

De Boeck and Wilson (2004), in providing their anatomy of explanatory models,
identify the three building blocks that can be used in the construction of models whose aim
is to explain observed variance.
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The first building block is random effects, in which a set of model parameters are as-
sumed to be draws from a common superordinate distribution. Random effects can be made
hierarchical, so that the parameters of the superordinate distribution themselves are draws
from a higher-level distribution, or they can be crossed, so that some parameters are combi-
nations of outcomes of draws from multiple distributions. The random-effects assumption
has many advantages, including the possibility of estimating population-level parameters
(e.g., a person-specific parameter might be a draw from a group-level distribution, whose
parameters will be descriptive of the group). Additionally, random sampling from a larger
population is often a more truthful description of how participants (and, sometimes, items
or stimuli) are selected. Random effects have been applied in item response models for
decades, but have only relatively recently found their way into cognitive modeling (see, e.g.,
Rouder, Sun, Speckman, Lu, & Zhou, 2003).

The second building block is manifest predictors, in which external covariates are
used to reduce unexplained variance in parameters. Several straightforward methods for
the inclusion of manifest predictors exist; One can imagine a linear structure, where some
person-specific parameter θ(p) is no longer estimated, but replaced by the linear function
β0 + β1x(p), where x(p) is person p’s score on some external measure X. If X is continuous,
this amounts to a linear regression; if it is categorical it is an ANOVA-style structure.
Some caution is in order in the construction of such linear structures in order to respect
the natural domain of the to-be-explained parameter. For example, if θ is a proportion,
care should be taken to constrain the explanatory structure to predicting only values in the
[0−1] range. A standard method of enforcing such constraints is through the application of
a nonlinear link function. To constrain a parameter to the [0 − 1] range, a logistic function
is one of several possible link functions, so that the regression structure becomes θ(p) =
{

1 + exp
[

−(β0 + β1x(p))
]}−1

. Manifest predictors for process model parameters were used

by, among others, Oravecz, Tuerlinckx, and Vandekerckhove (2009) and Vandekerckhove et
al. (2010).

The third building block is latent predictors, in which the explanatory covariates
are not observed, but are inferred from the correlational structure between (for example)
performance on tasks, conditions, or items (across participants) or participants (across
tasks, conditions, or items). More precisely, latent variables are at least partially unobserved
variables that jointly explain the covariance between a set of observed variables (this is
called the “local independence” definition in Bollen, 2002). While latent predictors are
exceedingly common in, for example, personality psychology and aptitude research, they
have almost never been applied to cognitive model parameters in the manner proposed in
the next section. One application of a continuous unobserved predictor to cognitive model
parameters is seen in Pe, Vandekerckhove, and Kuppens (2013), whose diffusion model
included a person-specific drift-gain parameter that was fully unobserved but tied together
cognitive parameters with external covariates.1

1A slightly different latent variable construct, latent class assignment—in which the latent variable is
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Latent variables (LVs) can be used to construct explanatory structures for cognitive
model parameters. With this, the present paper completes the set of explanatory structures
available for cognitive models. This section contains a brief description of LV models as
they are used classically: to explain correlations between data points, rather than model
parameters. The subsequent section will then transition into the exact model that will be
applied to the example data set.

Confirmatory factor models

One of the main goals of confirmatory factor analysis (CFA), and the way it will be
used here, is to determine construct validity. By examining interrelations between manifest
variables (MVs) and explaining the interrelations in terms of a smaller number of unobserved
underlying LVs, CFA enables researchers to determine convergent validity (i.e., confirm that
MVs that should measure the same construct do so) and discriminant validity (i.e., confirm
that MVs that should not share an LV don’t).

In CFA, researchers posit one or a handful of possible low-dimensional underlying
structures that jointly explain the pattern of covariances between a larger number of MVs.
For example, if a test of scholastic aptitude consists of six subtests (these are the MVs),
three of which are tests of mathematical ability and three of language ability, a reasonable
underlying model might involve only two LVs. If P students take T subtests and their
scores are collected in the T –by–P matrix Y , then a CFA model with D underlying factors
requires Λ, a T –by–D matrix of loadings, and Φ, a D–by–P matrix of person-specific factor
scores. A typical representation of the factor model is then: Y = Λ × Φ + E, where E is a
T –by–P matrix of independent, zero-centered, normally distributed errors.

As it is written here, the factor model is unidentified—multiplying any row of Φ
with any real number and dividing the corresponding column of Λ by that number would
yield identical model predictions. Hence, Φ and/or Λ need to be constrained. As a result,
different factor models are distinguished not only by their dimensionality D, but also by the
pattern of constraints placed upon the elements of Λ and Φ. For ease of implementation,
the present application will constrain only elements of Λ, (a “λ-only” constraint) but it
will be demonstrated how other identification constraints can be obtained by post-hoc
transformations of the parameter estimates (for interpretation purposes, the “unit factor
variance” constraint described below will turn out to be useful).

Constraining the loadings matrix Λ is tantamount to deciding which MV is allowed
to be related to which LV. One possible approach is to limit each MV to load on exactly one
LV—a common CFA assumption known as simple structure or a congeneric factor model.
Since simple structure by itself does not guarantee identification, a further possible con-
straint is to fix one loading per LV to a particular value (most commonly 1, but in principle
any nonzero real value). A special case of simple structure is the one-factor model, in which

binary as opposed to continuous—has been used in some recent publications (e.g., Bartlema, Lee, Wetzels,
& Vanpaemel, in press; Lee & Wetzels, 2010; Lee, 2008; Vandekerckhove, Tuerlinckx, & Lee, 2008).
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Figure 3 . A graphical model representation of a latent variable model. In addition to the conventions
of the previous model, this graph contains deterministic nodes (double edges) and vector-valued
nodes (underlined). The c-plate indicates different independent measures and × indicates the inner
product.

all scores across tasks are scaled versions of one another, with Λ = (1, λ2, λ3, λ4, λ5, λ6)T .
Because of the confirmatory nature of CFA, it is recommended that researchers have a

strong theory underlying their factorial assumptions before analyzing data (McArdle, 2011;
Williams, 1995).

In order to change the identification constraints, simple transformations of the param-
eter estimates can be performed. For example, to obtain the more conventional constraint
of unit variance of the factor scores belonging to P participants:

∀f : σ2
(f) =

1

P − 1

P
∑

p=1

(

φ(f,p) − φ̄(f,·)

)2
:= 1,

it suffices to transform as follows: φ(f,p) = φ̂(f,p)/σ(f) and λ(t,f) = λ̂(t,f)σ(f), where the
hatted parameters are the estimates under the initial (pragmatic) λ-only constraints and t,
f , and p index tasks, factors, and participants, respectively. φ̄(f,·) is the across-participant
mean score on factor f . Regarding these transformations between identification schemes,
it should be noted that (a) prior distributions, especially informative ones, for the affected
parameters must be carefully defined, so that they do not convey spurious information after
the transformation, and (b) throughout this paper, the λ-only constraint will be used to
describe models (as in Fig 3), but the unit factor variance constraint will be used to interpret
results.

Figure 3 shows a graphical model representation of a LV for C independent mea-
sures. Vector-valued nodes have as many elements as there are factors in the LV solution.
Constraints are not indicated.
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Exploratory factor models

Exploratory factor models (EFAs) are identical to CFAs in their mathematical for-
mulation, but allow for more freedom in the loadings matrix and so require much less
theoretical commitment from the researcher. Typically, an EFA will have as many free pa-
rameters as possible while maintaining an identified model. The minimal requirements for
identification of an EFA are nontrivial (see, e.g., Loken, 2005); one example of a minimally
identified structure with D(D + 1)/2 values fixed is:

Λ =



















1 0 0
λ(2,1) 1 0

λ(3,1) λ(3,2) 1

λ(4,1) λ(4,2) λ(4,3)

λ(5,1) λ(5,2) λ(5,3)

λ(6,1) λ(6,2) λ(6,3)



















,

which considers the same hypothetical data set as before with six MVs. This EFA loadings
matrix allow almost every MV to load on all LVs; the constraint is satisfied if the first MV
is supported by exactly one LV, the second MV is supported by exactly two LVs, and so
on until the remaining MVs are supported by all LVs. Jöreskog (1969) and Loken (2005)
discuss and review further sufficient requirements.

Beyond the issue of factor identification, there is an issue of rotation invariance: Factor
models are only identified up to a rotation of the factors. To obtain a unique rotation, a
common strategy is the one described by Geweke and Zhou (1996), in which the loadings
matrix has an upper triangle of zeros, the diagonal elements are constrained to be positive,
and the factor scores are constrained to have unit variance. These constraints match exactly
the ones described in the previous paragraph as the “unit variance constraint” and the “λ-
only” constraint is equivalent.

Finally, no single latent variable model is fully exploratory. For instance, the ex-
ample requires the researcher to commit to a three-dimensional latent structure, while a
truly exploratory analysis would consider all seven possible dimensionalities. EFA therefore
naturally takes on a model selection component.

Discussion

This section contained a very brief overview of the most basic principles of a typical
case of latent variable modeling, factor analysis, in which a number of manifest variables are
considered as linear combinations of underlying, unobserved, latent variables. The weights
of the linear combinations, called loadings, are at the center of the method of achieving model
identification used in this paper, and the choices that are made to ensure identification also
determine the degree to which a model is confirmatory versus exploratory.

The person-specific values of the LVs, called factor scores are in turn critical to the
final interpretation of the model results. These scores express the degree to which a par-
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ticipant possesses the unobserved quality, and a participant’s score directly affects their
performance in all tasks bound to that LV.

In the next section, it will be argued that a latent variable model applied not to raw
data, but to parameters of cognitive models, is a feasible approach with practical appeal.

The cognitive latent variable model

Rationale

Recognizing that there exist two independent traditions with a wealth of interesting
model constructs, one can combine elements from cognitive modeling and latent variable
models into a new type of quantitative model. This CLVM has two distinct components.
Firstly, the data level of the model is defined as the predicted distribution of the data,
given all the relevant parameters for a particular data point (i.e., it is the fully marginalized
likelihood of the model). In the present application, the data level is a diffusion model for
some data points and a normal distribution for others. The measurement level of the model
is a set of linear equations that relate parameters at different conditions, participants, items,
and possibly other experimental units to one another. Here, a confirmatory factor model
will be used.

The primary property that sets this CLVM apart from classical latent variable models
is the nature of the data level. While classical latent variable models have data levels that
are to an extent mere restatements of the data (the mean of a group, the average accuracy in
a condition, etc.), the diffusion model used here is based in cognitive science and has process
parameters with distinct psychological interpretations. Consequently, this model will allow
conclusions of the type “there exists a latent ability that affects the speed of information
processing in some conditions of this experiment, but not others, and that causes dependence
between the behavior in these conditions across participants.”

Why to avoid two-stage procedures. To address a question like the one above,
it is tempting to consider a two-stage analysis. In such a procedure, one might (a) estimate
the cognitive model parameters in each of C conditions and for each of P persons and
collect the estimates in a P–by–C matrix X, and then (b) perform latent variable analysis
on X. There are two (related) reasons to object to this procedure. First, it is unclear how
statistical inference should proceed in this scenario. The parameter estimates obtained in
(a) have joint uncertainty (standard error of estimation or posterior variance, depending
on ones statistical philosophy) associated with them and this uncertainty is lost in (b),
a problem sometimes referred to as generated regressor bias (for an overview, see Pagan,
1984). As a result, the uncertainty on measurement-level parameters obtained in the second
stage cannot be ascertained with off-the-shelf tools, prohibiting statistical inference (but
see Vandekerckhove, Panis, & Wagemans, 2007, for an application of a computationally
intensive bootstrap solution). Second, this procedure requires that each person-by-condition
combination have enough data points so that parameters can be estimated at all. To use
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the diffusion model as an example, each cell would have to have at least some responses in
each response category (e.g., at least some error and some correct responses).

Because the model proposed here is a one-stage procedure, uncertainty propagates
from the data to the final parameter estimates at all levels of the model; because it is applied
to an entire data set at once (allowing cross-talk between data from different conditions and
participants), it is not necessary that all cells of the experimental design have many data
points. These advantages are not unique to the model presented here, they are inherent to
hierarchical models (Gelman & Hill, 2007; Lee, 2011).

Why to avoid latent variable analysis on basic summary statistics. An-
other conventional alternative to the approach used here would be to apply a latent variable
model to the mean RTs across person-by-condition combinations. Formally, this procedure
is almost identical to the two-stage analysis laid out in the previous paragraph; the only dif-
ference being that instead of cognitive model parameters being estimated in (a), parameters
of a conveniently easy-to-use distribution (a Gaussian or some other member of the expo-
nential family) are estimated. The first criticism of the two-stage approach holds exactly:
uncertainty about the mean RTs is not propagated and a cell with only a handful of observa-
tions would (by default) be given equal weight to a cell with many observations. The second
criticism applies only weakly: this analysis requires at least one data point per cell, which
seems like a more agreeable constraint. However, this approach invites a third, more severe
criticism: it does not permit the process-based conclusions that cognitive scientists often
desire. While it may be possible to infer latent factors that affect mean RT, this method
can shed no light on why the RT changes. In terms of a diffusion model, participants might
differ in their ability (drift rate), in their caution (boundary separation), or in their motor
response time. A cognitive process model is required to account for these differences across
participants, and to decompose the interacting effects of these more elementary individual
propensities.2

To summarize the rationale for the integrated model, it provides (a) a cognitive model
because without one, one cannot draw conclusions about the process that generated the
data; (b) a latent variable model because without one, one cannot combine data across
conditions and participants to infer underlying abilities; (c) a one-stage integrated model
because two-stage models do not propagate statistical uncertainty and statistical inference
is hampered.

Parameter estimation and Bayesian methods

To fit CLVMs to data, parameter estimation and inference were conducted in a
Bayesian statistical framework (see, e.g., Gelman, Carlin, Stern, & Rubin, 2004). This

2It should be noted that focusing solely on descriptive statistics may be very useful from a machine-
learning point of view, if the focus of the analysis is strictly to to predict future mean RTs. However, from
the vantage point of the cognitive scientist, a purely data-driven approach is not elucidating.
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choice was made not only because of the desirable philosophical properties of the Bayesian
framework, but also because the implementation and execution of these models turns out
to be comparatively easy with general-purpose Bayesian estimation software.

In the Bayesian paradigm, ones knowledge about parameters is encoded entirely as
statistical distributions. Bayes’ theorem (Eq. 2) is used to update knowledge about a set of
parameters prior to observing the data (the prior distribution) with the likelihood of the
data under each parameter set, in order to obtain a distribution that reflects knowledge
posterior to observing the data (the posterior distribution):

p(θ|y, M) =
p(y|θ, M)p(θ|M)

p(y|M)
(2)

Because these computations typically require high-dimensional integration with no
analytical solution, numerical integration methods such as Markov chain Monte Carlo meth-
ods (MCMC; Robert & Casella, 1999) are a staple of applied Bayesian statistics. Without
going into detail about MCMC methods in general or any sampling algorithm in particular,
it bears mentioning that the procedures require some amount of quality control whenever
they are applied. A common measure of quality control is to repeat the procedure multi-
ple times with varying initial conditions, then confirming that the repeated sample chains
yield similar distributions. A statistic that quantifies this convergence is Gelman and Ru-
bin’s (1992) estimated potential scale reduction parameter R̂, which takes large values if
the chains did not converge to the same distribution, and values close to 1 if they did.3

Typically, R̂ < 1.1 is considered to indicate good convergence.
Several general-purpose MCMC engines exist that are built exactly for the purpose of

facilitating Bayesian analyses. These general-purpose engines include WinBUGS (“Bayesian
inference Using Gibbs Sampling”; Lunn, Thomas, Best, & Spiegelhalter, 2000), JAGS (“Just
Another Gibbs Sampler”; Plummer, 2003), and, more recently, Stan (Stan Development
Team, 2013). JAGS and Stan are open-source, cross-platform, and easy to use. Critically,
they can be extended with custom functions, distributions, and samplers, and custom cog-
nitive models have succesfully been implemented in JAGS (Wabersich & Vandekerckhove,
in press).

Model selection

A major goal in latent variable modeling (cognitive or otherwise) is dimensionality
selection: the determination of the number of LVs required to account for the covariance
pattern between MVs. Because the current approach involves defining a set of candidate
models of different dimensionalities, model selection is a key tool. In the present application,
focus will be on the Deviance Information Criterion4 (DIC; Spiegelhalter, Best, Carlin, &

3R̂ is similar to the Fdf statistic in analysis of variance; it is a ratio of between-chain variance and
within-chain variance.

4Another model selection method that could be applicable to the models described here is automatic
feature selection (AFS; Gershman & Blei, 2012).
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Van Der Linde, 2002):
DICM = D(θ̂) + pD.

DIC is constructed like a classical information criterion, with a badness-of-fit compo-
nent D(θ̂) added to a complexity component pD. Analogously to other information criteria
like Akaike’s and the Bayesian information criterion, DIC values can be transformed into
model weights (Wagenmakers & Farrell, 2004):

wM =
e−DICM

∑

m e−DICm

.

In the application, weights wM will be used to select models.

Application: Dimension reduction over hybrid data

A most typical example of latent variable modeling in cognitive science is the literature
on executive functions (e.g., Miyake et al., 2000). In studies in this area, participants
(typically many) are presented with batteries of related tasks, each of which taps one or more
executive functions—latent constructs that are interpreted as basic functions of cognition.
In the example data set (due to Pe, Raes, et al., 2013), P = 99 participants performed an
affective proactive interference (PI) task in which they were asked to rapidly study a set
of four words, and then determine whether a probe word (presented immediately following
the study set) was in the set. A proactive interference effect then occurs when the probe
was a member of the study set in the trial directly preceding the current, but not in the
current study set, and this sequential effect causes a decrease in performance. A typical
PI task thus has four conditions, (a) a nonrecent-yes condition in which the probe was
present in the current study set but not in the previous, (b) a nonrecent-no condition where
the probe was present in neither the current nor the previous study set, (c) a recent-yes
condition in which the probe was present in both the current and previous study sets, and
(d) a recent-no condition in which the probe was present in the previous set but not in the
current. The PI effect shows in differential performance between conditions (b) and (d).

A large data set with various indicators

Expanding on the popular PI paradigm, Pe, Raes, et al. (2013) also manipulated the
emotional valence of the probe words over three levels: positive, negative, and neutral. This
extension resulted in a total of 12 subtasks.5

Furthermore, Pe, Raes, et al. (2013) collected several clinical and personality mea-
sures in order to explore the relationship between performance in their affective PI task
and emotional coping strategies. A correlation between RT and clinical measures such as

5Out of 99 × 152 = 15048 trials, 55 were deleted because no response was recorded and 45 trials because
their RTs were too slow to credibly represent normal task performance (more than 2s). No trials were
removed because of conspicuously fast RTs (less than 0.2s). A total of 0.66% of trials were removed.
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dysphoria and tendency to ruminate is well documented (e.g., Bonin-Guillaume, Blin, &
Hasbroucq, 2004). A novel type of question that can be addressed by a CLVM is the follow-
ing: Which (if any) components of the task performance are related to the clinical measures
of interest? Or: Can we identify interpretable components of performance in an emotional
PI task that relate to depression? These questions allow a qualitatively different type of
conclusion from classical analyses.

A hybrid-data cognitive latent variable model

In order to explore this question, a series of CLVMs with hybrid data levels was con-
structed. The latent factors involved in the PI task were made to jointly predict drift rates
for the PI task as well as scores on the Center for Epidemiologic Studies Depression Scale
(CES-D; Radloff, 1977) and on the Ruminative Response Scale (RRS; Treynor, Gonzalez,
& Nolen-Hoeksema, 2003).

Data level. In each model, the data level (or marginal likelihood level) for the
behavioral data was the first-passage time distribution of an unbiased (i.e., β = 0.5) Wiener
diffusion model (Eq. 1), where crossings of the lower decision boundary are interpreted
as errors.6 Finally, person-specific boundary separation parameters α(p) were allowed for,
as well as person-by-task effects on the drift rates δ(t,p) and nondecision times τ(t,p). The
marginal likelihood for the choice RTs is therefore:

y(t,p,i) ∼ W
(

α(p), τ(t,p), 0.5, δ(t,p)

)

, (3)

where the distribution W is the Wiener diffusion model density as defined in Equation 1.
A separate data level needed to be defined for the covariates. A conventional choice

is the normal distribution, so that if the CES-D and RRS scores of person p are X(1,p) and
X(2,p), respectively, then for c = 1, 2:

x(c,p) ∼ N
(

µ(c,p), ε2
(c)

)

.

Measurement level. In models M1 through M7, the measurement level related
only to the drift rates—the parameter in the diffusion model that best captures a partici-
pant’s ability at a task—and the covariates. If ∆ is the person-by-task matrix of drift rates
δ(t,p), the measurement level was the linear system ∆ = Λ × Φ, where the constraints on
the loadings matrix Λ define the factor model. The core of these CLVMs can therefore be
restated as:

y(t,p,i) ∼ W



α(p), 0.5, τ(t,p),
F
∑

f=1

λ(t,f)φ(f,p)



 .

6The choice to map the boundaries to accuracy, rather than response type, was made to preserve the
interpretation of the drift rate parameter as an ability parameter for which high values indicate high ability.
Given this choice of mapping, the unbiased model is preferred because an a-priori bias towards whichever
response option is correct (or wrong) on a given trial has no psychological meaning.
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Simultaneously, for the covariates, if M is the person-by-covariate matrix of traits µ(c,p),
the measurement level also included M = B × Φ:

x(c,p) ∼ N





F
∑

f=1

β(c,f)φ(f,p), ε2
(c)



 .

In order to implement the joint latent structure for the two data levels, a loadings
matrix with two submatrices was constructed. For this data set, the loadings matrix had
12 rows for the PI tasks and 2 additional rows for CES-D and RRS, respectively. Now, the
matrix Υ contains both all the drift rate parameters δ(t,p) in a 12–by–P submatrix ∆ and
the predicted (i.e., free of measurement error) covariate values µ(c,p) in a submatrix M . The
measurement equation then takes the hybrid form

(

∆

M

)

=

(

Λ

B

)

× Φ,

or more concisely: Υ = K × Φ, with K defined as in Equation 4.

K =

























































1 1 0 0 0 0
1 0 0 0 0 0
1 0 1 0 0 0
1 0 0 1 0 0
1 λ(5,2) 0 0 0 0

1 0 0 0 0 0
1 0 λ(1,3) 0 0 0

1 0 0 0 1 0
1 λ(9,2) 0 0 0 0

1 0 0 0 0 0
1 0 λ(11,3) 0 0 0

1 0 0 0 0 1
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nonrecent-yes, negative

nonrecent-no, negative

recent-yes, negative

recent-no, negative

nonrecent-yes, positive

nonrecent-no, positive

recent-yes, positive

recent-no, positive

nonrecent-yes, neutral

nonrecent-no, neutral

recent-yes, neutral

recent-no, neutral

CES-D

RRS

Equation 4: The measurement level of the hybrid-data CLVM M6 in the example application.

In the hybrid loadings matrix K, the first column captures general task ability. This
“baseline ability” determines performance in the nonrecent-no conditions. The second col-
umn captures the ability to detect a novel probe in a set (DA—nonrecent) and the third
the detection ability (DA) for a recently seen probe in a set (DA—recent; this factor could
also be thought of as ‘primed detection’). The final three columns are PI effects for the
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negative (PI(−)), positive (PI(+)), and neutral stimuli (PI(∅)), respectively. As indicated,
the first four rows pertain to the drift rates of the nonrecent-yes, nonrecent-no, recent-yes,
and recent-no conditions with negative target stimuli, the next eight rows are repetitions
for the positive and neutral stimuli, and the bottom two rows are the loading weights for
the CES-D and RRS covariates, respectively.

The model can be identified through a unit factor variance constraint7, so that all λ-s
in the loadings matrix are free to be estimated.

In addition to the CLVM now fully defined, nine more models were constructed. By
defining a large set of competing models and deciding to select between them, this procedure
is in line with the advice of McArdle (2011), who recommended that model selection begin
with a confirmatory phase and conclude with a more exploratory phase in which competing
models are considered.

Candidate models were inspired either by ad-hoc theories of the PI task, by the desire
to compare to a saturated or baseline model, or were suggested by reviewers. The model
just described is M6. Models M1 through M7 are variations on this model, differing only
in the loadings matrix Λ (details of all models are given in the Appendix).

Three CLVMs (M8 through M10) were constructed at the suggestion of reviewers to
focus on diffusion model parameters other than the drift rate. Two models will be considered
with factorial structures that pertain to the nondecision time. The first such model (M8)
had the same loadings matrix as K, above. The second nondecision time model (M9) had
an identity matrix for Λ9. Finally, one model (M10) had latent variables simultaneously
for drift rate and boundary separation, so that its measurement equation was:







∆

A

M






=

(

Λ10

B

)

× Φ,

with A referring to the vector of person-specific boundary separation parameters. The
weights matrix B now contains two extra entries that connect the latent variable for bound-
ary separation to the personality covariates. The full loadings matrix is given as Equation 5.

Priors. As in all Bayesian analyses, a CLVM in a Bayesian framework requires that
one define a number of prior distributions. The priors used for the present analysis are

7Under a unit factor variance constraint, the between-person variance in factor scores is constrained to be
1. The practical implementation of this constraint in a Bayesian context involves a two-stage procedure in
which the model is first estimated with unconstrained factors but a constrained λ-structure, as above. In a
second stage, the estimated factor scores (φ̂) and loadings (λ̂ and β̂) are rescaled: φ

(i)

(f,p)
= φ̂

(i)

(f,p)
/σ

(i)

(f)
, where

the superscript i refers to the ith sample in the MCMC chain, and σ
(i)

(f)
is the between-person standard

deviation in factor f at iteration i. Additionally, λ
(i)

(t,f)
= λ̂

(i)

(t,f)
× σ

(i)

(f)
and β

(i)

(c,f)
= β̂

(i)

(c,f)
× σ

(i)

(f)
, for all

covariates c = 1, . . . , C. In the loadings matrix, this will result in the constraint that all λ-s that were
originally set to 1 will now be freely estimated, under the remaining constraint that λ-s that were originally
set equal to 1 within the same column of Λ are equal to one another. Note that this change of constraint
implies slightly different priors on the affected parameters.
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recent-no, negative

nonrecent-yes, positive

nonrecent-no, positive

recent-yes, positive

recent-no, positive

nonrecent-yes, neutral

nonrecent-no, neutral

recent-yes, neutral

recent-no, neutral

boundary separation

CES-D

RRS

Equation 5: The measurement level of the hybrid-data CLVM M10 in the example application. In compari-
son to the measurement level of M6, this loadings matrix has an extra row and column to accommodate the
person-specific boundary separation parameters, which now follow the distribution α(p) ∼ N

(

φ(7,p), σ2
α

)

.

given in Figure 4). These priors are generally weakly informative, specifying a plausible
range for the parameters but low weight to possible but unlikely values.

The normal distribution is conjugate for the drift rate of the diffusion model (i.e., a
normal prior leads to a normal full conditional distribution) and is for that reason preferred
for the parameters relating to the drift rate. For the other parameters of the diffusion
model, no conjugate priors are available, and priors were chosen that reflect knowledge of
the scale of the variables and that have positive density across a range that is certain to
contain the domain of the posterior.8

These priors, together with the data level in Equation 3 and the measurement equa-
tions Υ = K × Φ, fully define the model. Figure 4 shows a graphical representation of the
model. Note how that graph includes as components the graphical models for a diffusion
model across conditions (Fig. 2) and an LV model with various measures (Fig. 3), which
clearly visualizes the cross-breeding between modeling traditions.

8Limited robustness checks were performed by introducing changes in these priors. For example, a normal
was changed to a uniform over a wide range or vice versa, and no meaningful differences in the results were
observed.
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t = 1 : T
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(hybrid) data level
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(
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√
2Ip

)
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(

0,
√
2If

)

βc ∼ MVN
(

0,
√
2If

)

σ−2

c ∼ Γ (3, 1)

τpt ∼ N (µτ , σ
2

τ )

µτ ∼ N (0.3, 2)

σ−2

τ ∼ Γ (6, 1)

αp ∼ N (µα, σ
2

α)

µα ∼ N (1.5, 2)

σ−2

α ∼ Γ (6, 1)

δpt = Λt × Φp

µpc = βc × Φp

ypti ∼ W(αp, τpt, 0.5, δpt)

Xpc ∼ N (µpc, σ
2

c )

Figure 4 . A graphical representation of the model used in the example application. In this graph,
the p-plate indicates independent repetitions over P participants, t over T tasks, i over I trials,
and c over C external covariates. The defining aspect of a hybrid-data CLVM is shown in the
two arrows leaving the latent factor node Φ: The single set of underlying latent variables unifies
the correlational structure among and between ability parameters δ(t,p) and covariates X(c,p). The
graphical models for a diffusion model (Fig. 2) and an LV model (Fig. 3) are clearly subsumed in
the graphical representation of the CLVM. Note that identification constraints are not represented
in this display.

Results—technical

For each of the models, JAGS was used to run eight MCMC chains with 5,000 it-
erations each. From each chain, 3,000 samples were discarded as burn-in, leaving 16,000
posterior samples. Negligible chain autocorrelations indicated good mixing and no need for
chain thinning. With few exceptions, potential scale reduction parameters (R̂; Gelman et
al., 2004) were less than 1.1 (and all were below 1.2), indicating good chain convergence in
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all dimensions.

Results—model evaluation

For each of the models, we computed the DIC fit measure, as well as model selection
weights wM based on DIC. The two best fitting models were M10 (DIC10 = −2718) and
M6 (DIC6 = −2281; fit information for all models is given in the Appendix). The weights
w were negligible for all models except M10 (and so w10 ≈ 1). For interpretation purposes,
it is additionally worth noting a pattern across model solutions: the CESD and RRS scales
consistently turn out to relate to the PI effect, and in particular to the PI effect in the
negative-target condition, across all models that include a PI effect.

Though the psychometric modeling approach does not require the model to capture
minor aspects of the data exactly, it is important for parameter interpretation that there
is at least a coarse correspondence between model and data. Figure 5 provides diagnostic
graphical contact between model M10 and the data. To construct that figure, posterior
predictive statistics were generated: data sets generated from each of 5,000 samples that
had been drawn from the full posterior distribution of the model parameters. On each data
set so generated, as well as on the raw data, a set of summary statistics was computed. In
the figure, the distribution of the statistics generated by the model (shades of grey; darker
means higher model-predicted density) is overlaid with the raw data (the white markers).
The posterior predictive check does not indicate any systematic misfit.

Results—substantive

Part of the factor solution of the hybrid-data CLVM (M10) is shown in Figure 6.
The round markers indicating choice RT tasks are all placed on an axis, indicating that
the tasks load exclusively on one dimension9, some more strongly than others. More in-
teresting for the present data is the location of the questionnaire measures (CES-D and
RRS; triangular markers). The partial factor space shows both measures in approximately
the same location, loading strongly negatively on the PI(−) dimension and the boundary
separation dimension, somewhat negatively on the DA—nonrecent factor, but very close to
0 on the PI(+) dimension. The loadings were also close to 0 on the intercept, DA—recent,
and PI(∅) dimensions (not shown).

Table 1 shows the loadings (β-s) for both measures on each dimension. Out of twelve
loadings, four show almost no posterior mass around 0. This is also displayed in Figure 6,
where none of the credible interval ellipses intersect the horizontal axis. Additionally, the
covariate scores are well recovered by the model: the correlation between CES-D and its
latent proxy µ̂1 is .93 (ε̂2

1 = 0.33) and that between RRS and µ̂2 is .91 (ε̂2
2 = 0.36). The

9This is by design, since PI can only occur in those trials where detection is not at hand, and only one
(valence-specific) type of PI can occur at a time. This structure is also seen in the loadings matrix where,
disregarding the intercept (the first column), each row contains at most one nonzero element. Note that this
is a property of the experimental paradigm and not a condition of the CLVM.
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Figure 5 . Posterior predictive statistics from the PI model. Each white dot represents a participant’s
mean RT in the task indicated by the axis. Only results from the negative-target conditions are
shown, but they were similar for the other two valences. The shaded area represents the model-
expected distribution of mean RTs. Several observations can be made. First, the RT means across
tasks correlate in the raw data, and the model clearly shows a corresponding covariance structure.
Second, all the salient aspects of the data (location, variance, covariance) are well captured by the
model. Finally, there is no evidence in this posterior predictive check of systematic model misfit.
Response accuracy (not displayed) is captured similarly well.

conclusion of these covariate results—that participants with higher scores on depression and
rumination scales show poorer ability at inhibiting interference from negative stimuli—is in
line with cognitive theories of depression (Gotlib, Roberts, & Gilboa, 1996).

Discussion of example application

The example analysis involved fitting a series of CLVMs to a data set containing
two types of data: 12 conditions of a RT experiment and 2 personality trait measures. A
single underlying factor structure was defined that jointly predicted behavior in the RT
task and scores on the personality traits. The use of a single unified model to tie together
cognitive model parameters with personality traits allowed for a specific, novel conclusion:
participants with higher dysphoria scores show more degraded information processing when
a cognitive task requires the suppression of lingering negative thoughts. In the literature on
cognitive theories of depression, this inertia of negatively valenced stimuli was predicted to
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Figure 6 . Four dimensions of the factor solution obtained from the hybrid-data CLVM M10. Left

panel: The latent factors PI(+) and PI(−) (corresponding to the fourth and fifth columns of
the loadings matrix). Right panel: The latent factors boundary separation and DA—nonrecent)
(corresponding to the seventh and third columns of the loadings matrix). In each panel, an axis
represents a latent factor, a round marker a condition in the experiment, and a triangular marker
a covariate (upward pointing for RSS, downward pointing for CES-D). The location of a marker
indicates the loadings on each latent factor, so that markers close to the origin are unrelated to
the latent factors and markers closer to the unit circle (dashed circle, drawn for reference only) are
strongly related. The markers for covariates are surrounded by a dashed ellipse, indicating the 99%
Bayesian credibility interval of the location. Note that these loadings were obtained under a unit
factor variance constraint.

be connected to dysphoria (e.g., Gotlib et al., 1996), and these results are in line with that
prediction. Additionally, participants with high dysphoria scores turn out to have lower
boundary separation parameters.

The CLVM model appears to fit the data well, and the uncovered relation between
cognitive performance and dysphoria is robust across variations of the model (i.e., the
relation hold in all models considered that contained a similar PI(−) factor). The data
appear to support the cognitive theory of depression that involves the lingering of negative
thoughts.

The utility of using a CLVM

Though a previous section made an a-priori rationale for using a CLVM over more
conventional approaches—namely that it is a better approximation of the actual sampling
scheme of the data—one might still wonder how a traditional analysis would fare with the
present data. At the suggestion of a reviewer, a two-stage analysis was performed in which
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Table 1
The loadings of the covariate measures in the hybrid-data CLVM factor solution (using a unit factor

variance constraint).

Covariate: Depression Rumination
Latent variable Mean (SD) Mean (SD)

DA—recenta 0.05 (0.11) 0.04 (0.11)
DA—nonrecenta -0.22 (0.14) -0.20 (0.14)
PI(−)b -0.43∗ (0.14) -0.39∗ (0.14)
PI(+)b -0.04 (0.14) 0.05 (0.14)
PI(∅)b -0.15 (0.13) 0.01 (0.14)
Boundary separation -0.46∗ (0.16) -0.51∗ (0.15)

* Posterior p(β > 0) < 0.01.
a: DA = Detection ability. b: PI = Proactive interference.

(a) a subject-wise measure of PI was defined as the mean RT in the recent-no condition
minus that in the non-recent-no condition, and then (b) the subject-wise measure was
regressed on the dysphoria scores on the tests. The regression weight between the PI score
and CES-D was small but significant (β = −0.02, t97 = −2.48, p < .05, r2 = .06). The
regression weight with RRS did not reach significance despite the large data set (β = −0.01,
t97 = −1.60, ns).

It is not clear how this numerical result should be interpreted. Is CES-D related
to a difference in mean RT because lower dysphoria is associated with greater caution or
indecisiveness, which in turn causes heteroskedasticity10 and selective exaggeration of RT
differences? Or do negatively valenced stimuli linger, causing processing interference if they
become targets in a subsequent trial? The CLVM model allowed the latter conclusion. Does
RRS not carry a significant correlation because it is unrelated to PI? Perhaps the comparison
to the CLVM is unfair because the CLVM took both covariates into account simultaneously
and could exploit their collinearity? A multiple regression attempt using CES-D and RRS
to jointly predict the negative-PI effect brought no solace for the traditional analysis (CES-
D: β = −0.02, t96 = −1.86, ns, RRS: β = −0.00, t96 = −0.01, ns). More likely, the effect
of RRS is occluded by the loss of information going from one stage to the next.

In contrast to the traditional approach, the CLVM provides parameter estimates with
no such statistical pitfalls, and that may be readily interpreted in process model terms.

10Mean and standard deviation of RTs tend to be correlated (i.e., RTs show scalar variability). Greater
caution therefore not only causes an increase in mean RT, but also greater variability. A dependent mea-
sure with greater variability will show exaggerated effects for identical manipulations, causing an otherwise
spurious correlation between effect sizes and variability across participants.
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General discussion

The present paper introduces and demonstrates a cognitive latent variable model, a
model that is a blend of cognitive modeling and psychometric latent variable modeling.
This model permitted conclusions about structural relations between cognitive constructs
in a way that was not possible through either component alone.

The current approach leaves room for a number of extensions. For example, the
structural level could be extended to include higher level structures, so that not only the
manifest variables have a correlational structure, but the latent variables as well. Such mod-
els could be called cognitive structural equation models. In such a model, the factor matrix
Φ would be subject to further constraints similar to the ones implied by the measurement
models used here, so that Φ = Θ × Γ. A higher-order loadings matrix Θ together with a
low-dimensional set of more abstract abilities Γ would then generate the basic factors Φ—
repeating the analogy used earlier, Φ could contain mathematical ability (which underlies
positive correlations among mathematics tests) as well as language ability (causing covari-
ance among language tests), but these two abilities might themselves be correlated with
one another due to the higher-order, more abstract ability intelligence.

Going one step further, one could consider nonlinear structural equations, in which
MVs are a function of the interaction between multiple latent variables. Using the same
example, one might imagine that a test taker’s mathematical ability φM is expressed in a
test through their language ability φL—that is, their mathematics score is partly modulated
by their language ability. In this case, µ(c,p) = λ(c,M×L)φ(M,p)φ(L,p) + . . . (where the ellipsis
is used to omit other potential additive factors).

On the strictly technical and implementational side, there will be a need for more
efficient parameter estimation routines. While the Monte Carlo methods we applied were
effective, the analyses in the example took well over a day of computing time. This compu-
tational expense is partly due to the complex likelihood evaluation, but inefficient sampling
increased the computing time ten- or twentyfold. The JAGS computing platform is highly
customizable, modular, and extendable, so that the current sampler could be substituted for
a more efficient one (e.g., one that takes into account new conjugacy relationships) without
changing the model specification. Alternatively, the models could be implemented in Stan,
which is at the time of writing still under development but may turn out to be more efficient
due to its use of the Hamiltonian Monte Carlo sampler (Hoffman & Gelman, 2011). Finally,
the issue of model selection and model identification in a CLVM context will require careful
attention.

Finding latent structure in interpretable cognitive model parameters seems a highly
appropriate endeavor for cognitive scientists, and an integrative CLVM has many potential
applications. Many areas of psychology deal with latent structures that are tapped by bat-
teries of tests, and that are only observed in the correlational pattern across tasks. One
example is working memory research, where batteries of working memory tasks are admin-
istered in order to infer the low-dimensional structure of working memory (e.g., Oberauer et
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al., 2000). Similarly, the structure of executive functions is typically studied through large
sets of smaller tasks, each potentially with a cognitive model underlying it (e.g., Miyake et
al., 2000). Here the focus was on a diffusion model data level, but these future applications
may occasion tailor-made data levels.
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Appendix
Parameter estimates for the various models in the example application

This Appendix lists parameter estimates for each of the models considered in the example
application.

Models under consideration

There were ten different models, all with the same hybrid data level but differing in
their measurement levels. The estimated loadings matrices Λ are shown in this Appendix.
In all matrices, loadings that were not estimated are displayed in italics. Estimates are
posterior means. Loadings are displayed with an asterisk if less than 1% of their posterior
mass is on the side of zero opposite the posterior mean (i.e., the posterior probability of
the displayed sign of the loading is at least .99). Unless otherwise noted, the first factor
in all solutions is an intercept; the others are explained below. The bottom two rows (or
rightmost columns in the transposition) in a loadings matrix always refer to CESD and
RRS, respectively.

Model 1 had only one latent factor for detection, with no PI effect.
(Λ|M1)T =

(

0.51* 0.51* 0.51* 0.51* 0.51* 0.51* 0.51* 0.51* 0.51* 0.51* 0.51* 0.51* 0.09 0.11
0.47* 0 0.47* 0 0.79* 0 0.22* 0 0.73* 0 0.23* 0 -0.18 -0.21

)

Model 2 had only one latent factor for detection and a constant PI effect across
valences. Preferring this model over M1 would indicate the existence of some PI effect.
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(Λ|M2)T =
(

0.51* 0.51* 0.51* 0.51* 0.51* 0.51* 0.51* 0.51* 0.51* 0.51* 0.51* 0.51* 0.21* 0.22*
0.47* 0 0.47* 0 0.78* 0 0.24* 0 0.73* 0 0.25* 0 -0.32* -0.34*

0 0 0 0.64* 0 0 0 0.64* 0 0 0 0.64* -0.27 -0.15

)

Model 3 had a single latent factor for detection and three valence-specific factors for
PI. Preferring this model over M2 would indicate that the PI effect depends on the valence
of the stimulus.
(Λ|M3)T =










0.57* 0.57* 0.57* 0.57* 0.57* 0.57* 0.57* 0.57* 0.57* 0.57* 0.57* 0.57* 0.16* 0.15*
0.61* 0 0.61* 0 0.61* 0 0.61* 0 0.61* 0 0.61* 0 -0.28* -0.31*

0 0 0 0.80* 0 0 0 0 0 0 0 0 -0.63* -0.60*
0 0 0 0 0 0 0 0.88* 0 0 0 0 -0.00 0.08
0 0 0 0 0 0 0 0 0 0 0 0.92* -0.06 0.07











Model 4 had a single latent factor for detection and three valence-specific factors for
PI, but the degree to which the various valence conditions depend on the detection factor is
no longer constant. Preferring this model over M3 would indicate that the degree to which
the detection factor affects the drift rate depends on the valence of the stimulus.
(Λ|M4)T =










0.51* 0.51* 0.51* 0.51* 0.51* 0.51* 0.51* 0.51* 0.51* 0.51* 0.51* 0.51* 0.19* 0.18*
0.47* 0 0.47* 0 0.80* 0 0.24* 0 0.73* 0 0.24* 0 -0.29* -0.31*

0 0 0 0.81* 0 0 0 0 0 0 0 0 -0.63* -0.61*
0 0 0 0 0 0 0 0.88* 0 0 0 0 0.17 0.24
0 0 0 0 0 0 0 0 0 0 0 0.92* 0.03 0.15











Model 5 had only one latent factor for detection, with detection no longer forced to
be equal between the recent and nonrecent yes conditions. Preferring this model over M4
would indicate that the influence of the detection factor scales differently between the recent
and nonrecent conditions.
(Λ|M5)T =










0.50* 0.50* 0.50* 0.50* 0.50* 0.50* 0.50* 0.50* 0.50* 0.50* 0.50* 0.50* 0.14 0.14
0.95* 0 0.29* 0 0.75* 0 0.23* 0 0.68* 0 0.22* 0 -0.21 -0.24*

0 0 0 0.82* 0 0 0 0 0 0 0 0 -0.63* -0.62*
0 0 0 0 0 0 0 0.89* 0 0 0 0 0.36 0.41
0 0 0 0 0 0 0 0 0 0 0 0.92* 0.18 0.29











Model 6 had two latent factors for detection, and different PI effects across valences.
Preferring this model over M5 would indicate that the drift rates are not strongly correlated
between recent and nonrecent conditions, and merit separate latent abilities.
(Λ|M6)T =














0.55* 0.55* 0.55* 0.55* 0.55* 0.55* 0.55* 0.55* 0.55* 0.55* 0.55* 0.55* 0.09 0.08
0.78* 0 0 0 0.66* 0 0 0 0.60* 0 0 0 -0.03 -0.04

0 0 0.75* 0 0 0 0.43* 0 0 0 0.53* 0 -0.41* -0.41*
0 0 0 0.81* 0 0 0 0 0 0 0 0 -0.61* -0.57*
0 0 0 0 0 0 0 0.87* 0 0 0 0 -0.10 -0.02
0 0 0 0 0 0 0 0 0 0 0 0.92* -0.10 0.04
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Model 7 is a saturated model with respect to drift rates: it has one latent factor for
each condition, and each of the latent factors has a loading for the two covariates. Note
that this model has no intercept:
(Λ|M7)T =





































0.84* 0 0 0 0 0 0 0 0 0 0 0 -0.37 -0.28
0 0.79* 0 0 0 0 0 0 0 0 0 0 0.21 0.37
0 0 0.67* 0 0 0 0 0 0 0 0 0 -0.47* -0.30
0 0 0 0.87* 0 0 0 0 0 0 0 0 -0.44* -0.37
0 0 0 0 0.81* 0 0 0 0 0 0 0 0.47* 0.39*
0 0 0 0 0 0.71* 0 0 0 0 0 0 0.09 0.04
0 0 0 0 0 0 0.69* 0 0 0 0 0 0.03 -0.11
0 0 0 0 0 0 0 0.86* 0 0 0 0 0.07 0.15
0 0 0 0 0 0 0 0 0.80* 0 0 0 -0.11 -0.12
0 0 0 0 0 0 0 0 0 0.79* 0 0 0.35 0.09
0 0 0 0 0 0 0 0 0 0 0.74* 0 0.19 0.13
0 0 0 0 0 0 0 0 0 0 0 0.91* 0.04 0.17





































Model 8 does not apply a structure to drift rates, but on nondecision time. The
structure is identical to the one used in M6:
(Λ|M8)T =















0.07* 0.07* 0.07* 0.07* 0.07* 0.07* 0.07* 0.07* 0.07* 0.07* 0.07* 0.07* 0.00 -0.01
0.06* 0 0 0 0.05* 0 0 0 0.05* 0 0 0 -0.00 0.04

0 0 0.07* 0 0 0 0.06* 0 0 0 0.06* 0 -0.05 -0.02
0 0 0 0.08* 0 0 0 0 0 0 0 0 -0.01 -0.03
0 0 0 0 0 0 0 0.07* 0 0 0 0 -0.02 0.00
0 0 0 0 0 0 0 0 0 0 0 0.07* 0.09 0.07















Model 9 is a saturated model with respect to nondecision time: it takes one latent
factor for each condition’s nondecision time. This model differs from M7 in that the co-
variates are now tied to nondecision time instead of drift rate. Preferring this model over
M8 would indicate that nondecision time does not follow the design of the experiment.
(Λ|M9)T =





































0.07* 0 0 0 0 0 0 0 0 0 0 0 -0.02 0.02
0 0.09* 0 0 0 0 0 0 0 0 0 0 -0.06 -0.10
0 0 0.08* 0 0 0 0 0 0 0 0 0 -0.02 -0.02
0 0 0 0.10* 0 0 0 0 0 0 0 0 -0.02 -0.05
0 0 0 0 0.07* 0 0 0 0 0 0 0 0.02 0.02
0 0 0 0 0 0.09* 0 0 0 0 0 0 0.08 0.01
0 0 0 0 0 0 0.08* 0 0 0 0 0 0.05 0.10
0 0 0 0 0 0 0 0.09* 0 0 0 0 -0.06 -0.03
0 0 0 0 0 0 0 0 0.07* 0 0 0 -0.02 0.00
0 0 0 0 0 0 0 0 0 0.08* 0 0 0.09 0.08
0 0 0 0 0 0 0 0 0 0 0.08* 0 -0.11 -0.09
0 0 0 0 0 0 0 0 0 0 0 0.10* 0.07 0.04





































Model 10 defines a factor structure that jointly involves drift rates, boundary sep-
aration, and the two covariates. The first twelve rows of the loadings matrix apply the
structure of the experimental design to the drift rate parameters, while the thirteenth row
relates an additional latent factor to the boundary separation. The final two rows relate all
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seven latent factors to the personality covariates:
(Λ|M10)T =

















0.54* 0.54* 0.54* 0.54* 0.54* 0.54* 0.54* 0.54* 0.54* 0.54* 0.54* 0.54* 0 0.34* 0.36*
0.80* 0 0 0 0.68* 0 0 0 0.61* 0 0 0 0 0.05 0.04

0 0 0.76* 0 0 0 0.44* 0 0 0 0.56* 0 0 -0.22 -0.20
0 0 0 0.86* 0 0 0 0 0 0 0 0 0 -0.43* -0.39*
0 0 0 0 0 0 0 0.88* 0 0 0 0 0 -0.04 0.05
0 0 0 0 0 0 0 0 0 0 0 0.93* 0 -0.15 0.01
0 0 0 0 0 0 0 0 0 0 0 0 0.54* -0.46* -0.51*

















Model fit indices

The DIC values for the ten models were: DIC1 = −2196, DIC2 = −1959, DIC3 =
−1771, DIC4 = −1989, DIC5 = −2265, DIC6 = −2281, DIC7 = 1772, DIC8 = −1858,
DIC9 = −1944, and DIC10 = −2718.


