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I describe a cognitive latent variable model, a combination of a cognitive model and a la-

tent variable model that can be used to aggregate information regarding cognitive parameters

across participants and tasks. The model is ideally suited for uncovering relationships between

latent task abilities as they are expressed in experimental paradigms, but can also be used as

data fusion tools to connect latent abilities with external covariates from entirely different data

sources. An example application deals with the structure of cognitive abilities underlying an

executive functioning task and its relation to personality traits.
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Introduction

Cognitive psychometrics

Cognitive psychometrics is the term coined by Batchelder

(1998) to describe the application of cognitive process mod-

els as assessment tools, or, more fundamentally, to apply the

psychometrics of individual differences to cognitive process

parameters. The practice of combining cognitive measure-

ment models with individual variability, implemented as sta-

tistical random effects, serves in the first place to adapt cog-

nitive models to the reality of randomly sampled, noninter-

changeable participants (e.g., Batchelder, 2007). As has been

pointed out by Estes (1956, 2002), Hamaker (2012), and

Heathcote, Brown, and Mewhort (2000), averaging artefacts

can lead to biased estimates and errors in inference. More
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than that, however, the assumption that an individual’s pro-

cess parameters are in fact a random draw from some super-

ordinate population distribution introduces a crucial new as-

pect to cognitive modeling: The idea that there might be for-

mal structure to be derived from the individual differences re-

searchers often observe among participants’ cognitive model

parameters.

Structured individual differences are a critical concept in

certain fields of cognitive science. For example, intelligence

research is dominated by studies in which individuals are as-

sessed on a variety of tasks, and it is typically observed that

participants who score high on one task also score high on

other tasks (e.g., Kamphaus, Petoskey, & Morgan, 1997).

This covariance is taken to imply that there exists a small

set of person-specific abilities that jointly give rise to corre-

lated behavior on the larger set of tasks (a “positive mani-

fold”). An identical approach is often taken in fields such

as working memory (e.g., Oberauer, Süß, Schulze, Wilhelm,

& Wittmann, 2000) or executive functioning (e.g., Miyake

et al., 2000), where unobserved factors supporting stable

differences across individuals are inferred from the corre-

lational pattern between multiple basic tasks. This type of

data analysis is widely known as latent variable modeling

(Bartholomew, Knott, & Moustaki, 2011; Skrondal & Rabe-

Hesketh, 2004).

Importantly, the interpretability and usefulness of the re-

sults of such analyses depend on the interpretability of the

quantities measured in the basic tasks. If each score in a

given set of tasks can reasonably be thought to tap intelli-
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gence, then it is valid to conclude that the inferred latent fac-

tors relate to intelligence as well. If, on the other hand, scores

in the basic tasks are nonlinear amalgams of more elementary

variables, interpretation of the latent factors is complicated.

Cognitive models serve to decompose such complex data into

interpretable parameters. The modeling strategy proposed in

this paper involves—within a single model—a latent variable

structure built on top of a cognitive process model, to allow

inference of latent variables that have cognitive interpreta-

tions.

A qualitatively different type of conclusion

When latent variable models are combined with cognitive

models to form a cognitive latent variable model (CLVM),

this affords a qualitatively different type of conclusion from

either classical psychometrics or classical cognitive model-

ing. For example, using a cognitive model with a parame-

ter interpreted as speed of information processing (e.g., the

drift rate in a diffusion model Ratcliff, 1978), a CLVM per-

mits inferences about unobserved variables that contribute to

the total rate of information processing in a particular task.

A conventional psychometric model would not permit such

process-based conclusions, whereas a conventional cognitive

model would not be equipped to infer higher-order latent

properties.

Combining cognitive models with latent variable mod-

els allows us to bridge the gap between experimental and

individual-differences research—a long-standing issue in

psychology since Cronbach’s (1957) lament that the science

is split across two disparate disciplines, reiterated more re-

cently by Borsboom (2006). It is the aim of the present pa-

per to present an example of a CLVM, a formal model that

extends the logic of cognitive psychometrics to include latent

variable structures.

The structure of the paper is as follows. The next section

will introduce two components of the CLVM: the diffusion

model as a cognitive model of choice response time data and

the factor analysis model as a measurement model to tie mul-

tiple tasks together. This section will also introduce some

required notation. The section after that will focus on prop-

erties of the integrative CLVM. After that, a short section

will be devoted to the relevant details of Bayesian inference

and model selection. Finally, a section will provide detail re-

garding the application of the CLVM in the field of emotion

psychology.

Diffusion models for two-choice RT

The data level of this CLVM consists of a probabilistic

representation of data as they are predicted by a particular

cognitive model—the sampling scheme of the data. The

cognitive model used here is a simplified diffusion model

for two-choice RT (Stone, 1960), which has been very pop-

ular in cognitive science (see Wagenmakers, 2009, for an

overview of recent applications and advances), with appli-

cations ranging from memory (Ratcliff, 1978) and low-level

perception (Ratcliff & Rouder, 1998) to semantic cognition

(Vandekerckhove, Verheyen, & Tuerlinckx, 2010) and emo-

tion psychology (Pe, Vandekerckhove, & Kuppens, 2013;

White, Ratcliff, Vasey, & McKoon, 2009). The diffusion

model is based on the principle of sequential accumulation of

information—it assumes that a decision making system sam-

ples small units of information, sequentially over time, from

whatever stimulus to which it was exposed. These sampled

units of evidence are aggregated with information already ac-

cumulated. After each accretion step, the system evaluates

whether the total amount of evidence warrants the making of

a decision. If so, the process ends and a response is executed.

This accumulation process is the fundamental assumption—

the “central dogma”—of a broad and highly successful class

of sequential sampling models for RT.

More specifically, the process assumptions of the diffu-

sion model are that a single evidence counter accumulates

towards one of two decision boundaries, with a starting point

that may be closer to one boundary than the other. Figure 1

illustrates the process. Given the freedom of two decision

bounds, the model can account for two distinct types of bias

in the response process. In addition to biased processing of

information (which is reflected in the average rate of evi-

dence accumulation, a parameter called the drift rate, δ), the

diffusion model allows for an a-priori bias that is prior to and

independent of the information accumulation process (here

parameterized as a proportion, so that a bias β = 0.5 im-

plies a-priori indifference). The distance between the deci-

sion bounds (known as the boundary separation α) performs

a separate, interesting task in the diffusion process. Bounds

that are close together lead to fast decisions that are largely

independent from the information contained in the stimu-

lus (i.e., close to chance level), whereas distant bounds lead

to slow response processes whose outcome is mostly deter-

mined by the direction of the accumulation process (i.e., if δ

is positive and α is high, the upper boundary is likely to be

hit). This parameter hence captures the well-known speed-

accuracy trade-off. The fourth and final parameter of the dif-

fusion model is the nondecision time τ. This shift parameter
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Figure 1. An illustration of the Wiener diffusion model. Evidence is accumulated over the (horizontal) time dimension, at an average rate of

δ. The decision process terminates if the evidence value reaches 0 or α, and the amount of evidence at the onset of the trial is given by αβ.

The nondecision time τ reflects independent additive processes such as stimulus encoding and response execution. Equation 1 describes the

reaction time distributions that follow from these model assumptions. Figure adapted with permission from Vandekerckhove (2009).

determines the leading edge of the latency distribution, and is

typically interpreted as the sum duration of all non-decision

processes (and it is additionally assumed that these processes

are independent of and serial to the decision process).

The PDF of the Wiener diffusion model is bivariate (with

one dimension for the latency and one for the binary choice);

its analytical form also contains an infinite sum and the la-

tency distribution can therefore at best be approximated:
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]

p (t, x = 1|α, β, τ, δ) = p (t, x = 0|α, 1 − β, τ,−δ)

(1)

Fortunately, efficient methods for the computation of the

Wiener diffusion model density and distribution functions

exist (Blurton, Kesselmeier, & Gondan, 2012; Navarro &

Fuss, 2009, for the CDF and PDF, respectively), making it

a highly tractable model. Equation 1 lacks a diffusion coef-

ficient parameter, which is sometimes used to scale the ev-

idence dimension (and typically denoted s); the coefficient

does not appear because it will be set to 1 in all applications,

and it cancels out everywhere.

Figure 2 shows a graphical model representation of an un-

biased Wiener diffusion model for a data set where P partic-

ipants do a task with T conditions and I trials in each condi-

tion. For conciseness, y denotes a choice RT pair (t, x). The

equations to the right of the diagram list the distributional

assumptions of the model, including some example priors.

It is important to note that this data model can serve a dual

purpose for researchers in psychology. On the one hand,

researchers can decide to buy in to the assumptions of the

model—taking the process as given and drawing conclusions

that may hinge on the accuracy of these assumptions. For

this particular cognitive model, the literature contains reports

of experimental manipulations that selectively affect model

parameters, lending some credibility to the process assump-

tions (e.g., Voss, Rothermund, & Voss, 2004). However, the

model would remain useful even if one is unwilling to buy

in to the exact process—by taking the model as a conve-

nient data level that captures the shape of the data and serves

strictly as a parsimonious description.

Latent predictors—the third building block

De Boeck and Wilson (2004), in providing their anatomy

of explanatory models, identify the three building blocks that

can be used in the construction of models whose aim is to

explain observed variance.
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ytpi

αp

τp

δtp

p = 1 : P

i = 1 : I

t = 1 : T priors

data level

p(τp), p(αp) ∝ 1

δtp ∼ N(0, 2)

ytpi ∼ W(αp, τp, 0.5, δtp)

Figure 2. A graphical model representation of a Wiener diffusion model without a-priori response bias (i.e., β = 0.5). In this representation,

to-be-estimated variables are shown as plain circles and data have shading. Arrows indicate “is-parent-of” relationships, with parent nodes

determining the distribution of child nodes. The p-plate indicates independent repetitions over P participants, t over T conditions, and i over

I trials.

The first building block is random effects, in which a set

of model parameters are assumed to be draws from a com-

mon superordinate distribution. Random effects can be made

hierarchical, so that the parameters of the superordinate dis-

tribution themselves are draws from a higher-level distribu-

tion, or they can be crossed, so that some parameters are

combinations of outcomes of draws from multiple distribu-

tions. The random-effects assumption has many advantages,

including the possibility of estimating population-level pa-

rameters (e.g., a person-specific parameter might be a draw

from a group-level distribution, whose parameters will be de-

scriptive of the group). Additionally, random sampling from

a larger population is often a more truthful description of how

participants (and, sometimes, items or stimuli) are selected.

Random effects have been applied in item response models

for decades, but have only relatively recently found their way

into cognitive modeling (see, e.g., Rouder, Sun, Speckman,

Lu, & Zhou, 2003).

The second building block is manifest predictors, in which

external covariates are used to reduce unexplained variance

in parameters. Several straightforward methods for the in-

clusion of manifest predictors exist; One can imagine a

linear structure, where some person-specific parameter θ(p)

is no longer estimated, but replaced by the linear function

β0 + β1x(p), where x(p) is person p’s score on some external

measure X. If X is continuous, this amounts to a linear re-

gression; if it is categorical it is an ANOVA-style structure.

Some caution is in order in the construction of such linear

structures in order to respect the natural domain of the to-

be-explained parameter. For example, if θ is a proportion,

care should be taken to constrain the explanatory structure

to predicting only values in the [0 − 1] range. A standard

method of enforcing such constraints is through the appli-

cation of a nonlinear link function. To constrain a parame-

ter to the [0 − 1] range, a logistic function is one of several

possible link functions, so that the regression structure be-

comes θ(p) =
{

1 + exp
[

−(β0 + β1 x(p))
]}−1

. Manifest predic-

tors for process model parameters were used by, among oth-

ers, Oravecz, Tuerlinckx, and Vandekerckhove (2009) and

Vandekerckhove et al. (2010).

The third building block is latent predictors, in which

the explanatory covariates are not observed, but are inferred

from the correlational structure between (for example) per-

formance on tasks, conditions, or items (across participants)

or participants (across tasks, conditions, or items). More

precisely, latent variables are at least partially unobserved

variables that jointly explain the covariance between a set of

observed variables (this is called the “local independence”

definition in Bollen, 2002). While latent predictors are ex-

ceedingly common in, for example, personality psychology

and aptitude research, they have almost never been applied

to cognitive model parameters in the manner proposed in the

next section. One application of a continuous unobserved

predictor to cognitive model parameters is seen in Pe, Van-

dekerckhove, and Kuppens (2013), whose diffusion model

included a person-specific drift-gain parameter that was fully

unobserved but tied together cognitive parameters with exter-

nal covariates.1

Latent variables (LVs) can be used to construct explana-

tory structures for cognitive model parameters. With this,

1A slightly different latent variable construct, latent class as-

signment—in which the latent variable is binary as opposed to

continuous—has been used in some recent publications (e.g.,

Bartlema, Lee, Wetzels, & Vanpaemel, in press; Lee & Wetzels,

2010; Lee, 2008; Vandekerckhove, Tuerlinckx, & Lee, 2008).
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the present paper completes the set of explanatory structures

available for cognitive models. This section contains a brief

description of LV models as they are used classically: to ex-

plain correlations between data points, rather than model pa-

rameters. The subsequent section will then transition into the

exact model that will be applied to the example data set.

Confirmatory factor models

One of the main goals of confirmatory factor analysis

(CFA), and the way it will be used here, is to determine con-

struct validity. By examining interrelations between man-

ifest variables (MVs) and explaining the interrelations in

terms of a smaller number of unobserved underlying LVs,

CFA enables researchers to determine convergent validity

(i.e., confirm that MVs that should measure the same con-

struct do so) and discriminant validity (i.e., confirm that MVs

that should not share an LV don’t).

In CFA, researchers posit one or a handful of possible

low-dimensional underlying structures that jointly explain

the pattern of covariances between a larger number of MVs.

For example, if a test of scholastic aptitude consists of six

subtests (these are the MVs), three of which are tests of math-

ematical ability and three of language ability, a reasonable

underlying model might involve only two LVs. If P students

take T subtests and their scores are collected in the T–by–P

matrix Y, then a CFA model with D underlying factors re-

quires Λ, a T–by–D matrix of loadings, and Φ, a D–by–P

matrix of person-specific factor scores. A typical represen-

tation of the factor model is then: Y = Λ × Φ + E, where E

is a T–by–P matrix of independent, zero-centered, normally

distributed errors.

As it is written here, the factor model is unidentified—

multiplying any row of Φ with any real number and dividing

the corresponding column of Λ by that number would yield

identical model predictions. Hence, Φ and/or Λ need to be

constrained. As a result, different factor models are distin-

guished not only by their dimensionality D, but also by the

pattern of constraints placed upon the elements of Λ and Φ.

For ease of implementation, the present application will con-

strain only elements of Λ, (a “λ-only” constraint) but it will

be demonstrated how other identification constraints can be

obtained by post-hoc transformations of the parameter esti-

mates (for interpretation purposes, the “unit factor variance”

constraint described below will turn out to be useful).

Constraining the loadings matrix Λ is tantamount to de-

ciding which MV is allowed to be related to which LV. One

possible approach is to limit each MV to load on exactly one

LV—a common CFA assumption known as simple structure

or a congeneric factor model. Since simple structure by it-

self does not guarantee identification, a further possible con-

straint is to fix one loading per LV to a particular value (most

commonly 1, but in principle any nonzero real value). A

special case of simple structure is the one-factor model, in

which all scores across tasks are scaled versions of one an-

other, with Λ = (1, λ2, λ3, λ4, λ5, λ6)T .

Because of the confirmatory nature of CFA, it is recom-

mended that researchers have a strong theory underlying

their factorial assumptions before analyzing data (McArdle,

2011; Williams, 1995).

In order to change the identification constraints, simple

transformations of the parameter estimates can be performed.

For example, to obtain the more conventional constraint of

unit variance of the factor scores belonging to P participants:

∀ f : σ2
( f ) =

1

P − 1

P
∑

p=1

(

φ( f ,p) − φ̄( f ,·)

)2
:= 1,

it suffices to transform as follows: φ( f ,p) = φ̂( f ,p)/σ( f ) and

λ(t, f ) = λ̂(t, f )σ( f ), where the hatted parameters are the es-

timates under the initial (pragmatic) λ-only constraints and

t, f , and p index tasks, factors, and participants, respec-

tively. φ̄( f ,·) is the across-participant mean score on factor

f . Regarding these transformations between identification

schemes, it should be noted that (a) prior distributions, es-

pecially informative ones, for the affected parameters must

be carefully defined, so that they do not convey spurious in-

formation after the transformation, and (b) throughout this

paper, the λ-only constraint will be used to describe models

(as in Fig 3), but the unit factor variance constraint will be

used to interpret results.

Figure 3 shows a graphical model representation of a LV

for C independent measures. Vector-valued nodes have as

many elements as there are factors in the LV solution. Con-

straints are not indicated.

Exploratory factor models

Exploratory factor models (EFAs) are identical to CFAs

in their mathematical formulation, but allow for more free-

dom in the loadings matrix and so require much less theoret-

ical commitment from the researcher. Typically, an EFA will

have as many free parameters as possible while maintaining

an identified model. The minimal requirements for identifi-

cation of an EFA are nontrivial (see, e.g., Loken, 2005); one

example of a minimally identified structure with D(D + 1)/2

values fixed is:
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ΦpµcpXcp

Λcε2c

p = 1 : P

c = 1 : C

priors

measurement level

data level

Φp ∼ MVN(0, Ip)

Λc ∼ MVN(0, If)

(1/ε2c) ∼ Γ (0.1, 0.1)

µcp = Λc × Φp

Xcp ∼ N (µcp, ε
2

c)

Figure 3. A graphical model representation of a latent variable model. In addition to the conventions of the previous model, this graph

contains deterministic nodes (double edges) and vector-valued nodes (underlined). The c-plate indicates different independent measures and

× indicates the inner product.
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which considers the same hypothetical data set as before with

six MVs. This EFA loadings matrix allow almost every MV

to load on all LVs; the constraint is satisfied if the first MV

is supported by exactly one LV, the second MV is supported

by exactly two LVs, and so on until the remaining MVs are

supported by all LVs. Jöreskog (1969) and Loken (2005)

discuss and review further sufficient requirements.

Beyond the issue of factor identification, there is an issue

of rotation invariance: Factor models are only identified up

to a rotation of the factors. To obtain a unique rotation, a

common strategy is the one described by Geweke and Zhou

(1996), in which the loadings matrix has an upper triangle of

zeros, the diagonal elements are constrained to be positive,

and the factor scores are constrained to have unit variance.

These constraints match exactly the ones described in the

previous paragraph as the “unit variance constraint” and the

“λ-only” constraint is equivalent.

Finally, no single latent variable model is fully ex-

ploratory. For instance, the example requires the researcher

to commit to a three-dimensional latent structure, while a

truly exploratory analysis would consider all seven possible

dimensionalities. EFA therefore naturally takes on a model

selection component.

Discussion

This section contained a very brief overview of the most

basic principles of a typical case of latent variable model-

ing, factor analysis, in which a number of manifest variables

are considered as linear combinations of underlying, unob-

served, latent variables. The weights of the linear combi-

nations, called loadings, are at the center of the method of

achieving model identification used in this paper, and the

choices that are made to ensure identification also deter-

mine the degree to which a model is confirmatory versus ex-

ploratory.

The person-specific values of the LVs, called factor scores

are in turn critical to the final interpretation of the model re-

sults. These scores express the degree to which a participant

possesses the unobserved quality, and a participant’s score

directly affects their performance in all tasks bound to that

LV.

In the next section, it will be argued that a latent variable

model applied not to raw data, but to parameters of cognitive

models, is a feasible approach with practical appeal.

The cognitive latent variable model

Rationale

Recognizing that there exist two independent traditions

with a wealth of interesting model constructs, one can com-

bine elements from cognitive modeling and latent variable

models into a new type of quantitative model. This CLVM

has two distinct components. Firstly, the data level of the

model is defined as the predicted distribution of the data,
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given all the relevant parameters for a particular data point

(i.e., it is the fully marginalized likelihood of the model). In

the present application, the data level is a diffusion model for

some data points and a normal distribution for others. The

measurement level of the model is a set of linear equations

that relate parameters at different conditions, participants,

items, and possibly other experimental units to one another.

Here, a confirmatory factor model will be used.

The primary property that sets this CLVM apart from clas-

sical latent variable models is the nature of the data level.

While classical latent variable models have data levels that

are to an extent mere restatements of the data (the mean

of a group, the average accuracy in a condition, etc.), the

diffusion model used here is based in cognitive science and

has process parameters with distinct psychological interpre-

tations. Consequently, this model will allow conclusions of

the type “there exists a latent ability that affects the speed

of information processing in some conditions of this exper-

iment, but not others, and that causes dependence between

the behavior in these conditions across participants.”

Why to avoid two-stage procedures. To address a

question like the one above, it is tempting to consider a two-

stage analysis. In such a procedure, one might (a) estimate

the cognitive model parameters in each of C conditions and

for each of P persons and collect the estimates in a P–by–C

matrix X, and then (b) perform latent variable analysis on

X. There are two (related) reasons to object to this pro-

cedure. First, it is unclear how statistical inference should

proceed in this scenario. The parameter estimates obtained

in (a) have joint uncertainty (standard error of estimation

or posterior variance, depending on ones statistical philos-

ophy) associated with them and this uncertainty is lost in

(b), a problem sometimes referred to as generated regres-

sor bias (for an overview, see Pagan, 1984). As a result,

the uncertainty on measurement-level parameters obtained

in the second stage cannot be ascertained with off-the-shelf

tools, prohibiting statistical inference (but see Vandekerck-

hove, Panis, & Wagemans, 2007, for an application of a

computationally intensive bootstrap solution). Second, this

procedure requires that each person-by-condition combina-

tion have enough data points so that parameters can be es-

timated at all. To use the diffusion model as an example,

each cell would have to have at least some responses in each

response category (e.g., at least some error and some correct

responses).

Because the model proposed here is a one-stage proce-

dure, uncertainty propagates from the data to the final pa-

rameter estimates at all levels of the model; because it is ap-

plied to an entire data set at once (allowing cross-talk be-

tween data from different conditions and participants), it is

not necessary that all cells of the experimental design have

many data points. These advantages are not unique to the

model presented here, they are inherent to hierarchical mod-

els (Gelman & Hill, 2007; Lee, 2011).

Why to avoid latent variable analysis on basic sum-

mary statistics. Another conventional alternative to the

approach used here would be to apply a latent variable model

to the mean RTs across person-by-condition combinations.

Formally, this procedure is almost identical to the two-stage

analysis laid out in the previous paragraph; the only differ-

ence being that instead of cognitive model parameters being

estimated in (a), parameters of a conveniently easy-to-use

distribution (a Gaussian or some other member of the expo-

nential family) are estimated. The first criticism of the two-

stage approach holds exactly: uncertainty about the mean

RTs is not propagated and a cell with only a handful of ob-

servations would (by default) be given equal weight to a cell

with many observations. The second criticism applies only

weakly: this analysis requires at least one data point per cell,

which seems like a more agreeable constraint. However, this

approach invites a third, more severe criticism: it does not

permit the process-based conclusions that cognitive scientists

often desire. While it may be possible to infer latent factors

that affect mean RT, this method can shed no light on why the

RT changes. In terms of a diffusion model, participants might

differ in their ability (drift rate), in their caution (boundary

separation), or in their motor response time. A cognitive

process model is required to account for these differences

across participants, and to decompose the interacting effects

of these more elementary individual propensities.2

To summarize the rationale for the integrated model, it

provides (a) a cognitive model because without one, one can-

not draw conclusions about the process that generated the

data; (b) a latent variable model because without one, one

cannot combine data across conditions and participants to

infer underlying abilities; (c) a one-stage integrated model

because two-stage models do not propagate statistical uncer-

tainty and statistical inference is hampered.

2It should be noted that focusing solely on descriptive statis-

tics may be very useful from a machine-learning point of view, if

the focus of the analysis is strictly to to predict future mean RTs.

However, from the vantage point of the cognitive scientist, a purely

data-driven approach is not elucidating.
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Parameter estimation and Bayesian methods

To fit CLVMs to data, parameter estimation and inference

were conducted in a Bayesian statistical framework (see, e.g.,

Gelman, Carlin, Stern, & Rubin, 2004). This choice was

made not only because of the desirable philosophical prop-

erties of the Bayesian framework, but also because the im-

plementation and execution of these models turns out to be

comparatively easy with general-purpose Bayesian estima-

tion software.

In the Bayesian paradigm, ones knowledge about param-

eters is encoded entirely as statistical distributions. Bayes’

theorem (Eq. 2) is used to update knowledge about a set of

parameters prior to observing the data (the prior distribution)

with the likelihood of the data under each parameter set, in

order to obtain a distribution that reflects knowledge poste-

rior to observing the data (the posterior distribution):

p(θ|y,M) =
p(y|θ,M)p(θ|M)

p(y|M)
(2)

Because these computations typically require high-

dimensional integration with no analytical solution, numeri-

cal integration methods such as Markov chain Monte Carlo

methods (MCMC; Robert & Casella, 1999) are a staple of

applied Bayesian statistics. Without going into detail about

MCMC methods in general or any sampling algorithm in

particular, it bears mentioning that the procedures require

some amount of quality control whenever they are applied.

A common measure of quality control is to repeat the proce-

dure multiple times with varying initial conditions, then con-

firming that the repeated sample chains yield similar distribu-

tions. A statistic that quantifies this convergence is Gelman

and Rubin’s (1992) estimated potential scale reduction pa-

rameter R̂, which takes large values if the chains did not con-

verge to the same distribution, and values close to 1 if they

did.3 Typically, R̂ < 1.1 is considered to indicate good con-

vergence.

Several general-purpose MCMC engines exist that are

built exactly for the purpose of facilitating Bayesian

analyses. These general-purpose engines include Win-

BUGS (“Bayesian inference Using Gibbs Sampling”; Lunn,

Thomas, Best, & Spiegelhalter, 2000), JAGS (“Just Another

Gibbs Sampler”; Plummer, 2003), and, more recently, Stan

(Stan Development Team, 2013). JAGS and Stan are open-

source, cross-platform, and easy to use. Critically, they can

be extended with custom functions, distributions, and sam-

plers, and custom cognitive models have succesfully been

implemented in JAGS (Wabersich & Vandekerckhove, in

press).

Model selection

A major goal in latent variable modeling (cognitive or oth-

erwise) is dimensionality selection: the determination of the

number of LVs required to account for the covariance pat-

tern between MVs. Because the current approach involves

defining a set of candidate models of different dimensionali-

ties, model selection is a key tool. In the present application,

focus will be on the Deviance Information Criterion4 (DIC;

Spiegelhalter, Best, Carlin, & Van Der Linde, 2002):

DICM = D(θ̂) + pD.

DIC is constructed like a classical information criterion,

with a badness-of-fit component D(θ̂) added to a complex-

ity component pD. Analogously to other information criteria

like Akaike’s and the Bayesian information criterion, DIC

values can be transformed into model weights (Wagenmakers

& Farrell, 2004):

wM =
e−DICM

∑

m e−DICm

.

In the application, weights wM will be used to select mod-

els.

Application: Dimension reduction over hybrid data

A most typical example of latent variable modeling in

cognitive science is the literature on executive functions (e.g.,

Miyake et al., 2000). In studies in this area, participants

(typically many) are presented with batteries of related tasks,

each of which taps one or more executive functions—latent

constructs that are interpreted as basic functions of cogni-

tion. In the example data set (due to Pe, Raes, et al., 2013),

P = 99 participants performed an affective proactive inter-

ference (PI) task in which they were asked to rapidly study a

set of four words, and then determine whether a probe word

(presented immediately following the study set) was in the

set. A proactive interference effect then occurs when the

probe was a member of the study set in the trial directly pre-

ceding the current, but not in the current study set, and this

sequential effect causes a decrease in performance. A typical

PI task thus has four conditions, (a) a nonrecent-yes condi-

tion in which the probe was present in the current study set

3R̂ is similar to the Fd f statistic in analysis of variance; it is a

ratio of between-chain variance and within-chain variance.
4Another model selection method that could be applicable to the

models described here is automatic feature selection (AFS; Gersh-

man & Blei, 2012).
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but not in the previous, (b) a nonrecent-no condition where

the probe was present in neither the current nor the previous

study set, (c) a recent-yes condition in which the probe was

present in both the current and previous study sets, and (d)

a recent-no condition in which the probe was present in the

previous set but not in the current. The PI effect shows in

differential performance between conditions (b) and (d).

A large data set with various indicators

Expanding on the popular PI paradigm, Pe, Raes, et al.

(2013) also manipulated the emotional valence of the probe

words over three levels: positive, negative, and neutral. This

extension resulted in a total of 12 subtasks.5

Furthermore, Pe, Raes, et al. (2013) collected several clin-

ical and personality measures in order to explore the rela-

tionship between performance in their affective PI task and

emotional coping strategies. A correlation between RT and

clinical measures such as dysphoria and tendency to rumi-

nate is well documented (e.g., Bonin-Guillaume, Blin, &

Hasbroucq, 2004). A novel type of question that can be ad-

dressed by a CLVM is the following: Which (if any) com-

ponents of the task performance are related to the clinical

measures of interest? Or: Can we identify interpretable com-

ponents of performance in an emotional PI task that relate to

depression? These questions allow a qualitatively different

type of conclusion from classical analyses.

A hybrid-data cognitive latent variable model

In order to explore this question, a series of CLVMs with

hybrid data levels was constructed. The latent factors in-

volved in the PI task were made to jointly predict drift rates

for the PI task as well as scores on the Center for Epidemio-

logic Studies Depression Scale (CES-D; Radloff, 1977) and

on the Ruminative Response Scale (RRS; Treynor, Gonzalez,

& Nolen-Hoeksema, 2003).

Data level. In each model, the data level (or marginal

likelihood level) for the behavioral data was the first-passage

time distribution of an unbiased (i.e., β = 0.5) Wiener dif-

fusion model (Eq. 1), where crossings of the lower decision

boundary are interpreted as errors.6 Finally, person-specific

boundary separation parameters α(p) were allowed for, as

well as person-by-task effects on the drift rates δ(t,p) and non-

decision times τ(t,p). The marginal likelihood for the choice

RTs is therefore:

y(t,p,i) ∼ W
(

α(p), τ(t,p), 0.5, δ(t,p)

)

, (3)

where the distribution W is the Wiener diffusion model den-

sity as defined in Equation 1.

A separate data level needed to be defined for the covari-

ates. A conventional choice is the normal distribution, so that

if the CES-D and RRS scores of person p are X(1,p) and X(2,p),

respectively, then for c = 1, 2:

x(c,p) ∼ N
(

µ(c,p), ε
2
(c)

)

.

Measurement level. In models M1 through M7, the

measurement level related only to the drift rates—the param-

eter in the diffusion model that best captures a participant’s

ability at a task—and the covariates. If ∆ is the person-by-

task matrix of drift rates δ(t,p), the measurement level was

the linear system ∆ = Λ × Φ, where the constraints on the

loadings matrix Λ define the factor model. The core of these

CLVMs can therefore be restated as:

y(t,p,i) ∼ W

















α(p), 0.5, τ(t,p),

F
∑

f=1

λ(t, f )φ( f ,p)

















.

Simultaneously, for the covariates, if M is the person-by-

covariate matrix of traits µ(c,p), the measurement level also

included M = B × Φ:

x(c,p) ∼ N

















F
∑

f=1

β(c, f )φ( f ,p), ε
2
(c)

















.

In order to implement the joint latent structure for the two

data levels, a loadings matrix with two submatrices was con-

structed. For this data set, the loadings matrix had 12 rows

for the PI tasks and 2 additional rows for CES-D and RRS,

respectively. Now, the matrix Υ contains both all the drift

rate parameters δ(t,p) in a 12–by–P submatrix ∆ and the pre-

dicted (i.e., free of measurement error) covariate values µ(c,p)

in a submatrix M. The measurement equation then takes the

hybrid form
(

∆

M

)

=

(

Λ

B

)

×Φ,

5Out of 99 × 152 = 15048 trials, 55 were deleted because no re-

sponse was recorded and 45 trials because their RTs were too slow

to credibly represent normal task performance (more than 2s). No

trials were removed because of conspicuously fast RTs (less than

0.2s). A total of 0.66% of trials were removed.
6The choice to map the boundaries to accuracy, rather than re-

sponse type, was made to preserve the interpretation of the drift

rate parameter as an ability parameter for which high values indi-

cate high ability. Given this choice of mapping, the unbiased model

is preferred because an a-priori bias towards whichever response

option is correct (or wrong) on a given trial has no psychological

meaning.
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K =







































































































































1 1 0 0 0 0

1 0 0 0 0 0

1 0 1 0 0 0

1 0 0 1 0 0

1 λ(5,2) 0 0 0 0

1 0 0 0 0 0

1 0 λ(1,3) 0 0 0

1 0 0 0 1 0

1 λ(9,2) 0 0 0 0

1 0 0 0 0 0

1 0 λ(11,3) 0 0 0

1 0 0 0 0 1

β(1,1) β(1,2) β(1,3) β(1,4) β(1,5) β(1,6)

β(2,1) β(2,2) β(1,3) β(2,4) β(2,5) β(2,6)







































































































































∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

nonrecent-yes, negative

nonrecent-no, negative

recent-yes, negative

recent-no, negative

nonrecent-yes, positive

nonrecent-no, positive

recent-yes, positive

recent-no, positive

nonrecent-yes, neutral

nonrecent-no, neutral

recent-yes, neutral

recent-no, neutral

CES-D

RRS

Equation 4: The measurement level of the hybrid-data CLVMM6 in the example application.

or more concisely: Υ = K × Φ, with K defined as in Equa-

tion 4.

In the hybrid loadings matrix K, the first column captures

general task ability. This “baseline ability” determines per-

formance in the nonrecent-no conditions. The second col-

umn captures the ability to detect a novel probe in a set (DA—

nonrecent) and the third the detection ability (DA) for a re-

cently seen probe in a set (DA—recent; this factor could also

be thought of as ‘primed detection’). The final three columns

are PI effects for the negative (PI(−)), positive (PI(+)), and

neutral stimuli (PI(∅)), respectively. As indicated, the first

four rows pertain to the drift rates of the nonrecent-yes,

nonrecent-no, recent-yes, and recent-no conditions with neg-

ative target stimuli, the next eight rows are repetitions for the

positive and neutral stimuli, and the bottom two rows are the

loading weights for the CES-D and RRS covariates, respec-

tively.

The model can be identified through a unit factor variance

constraint7, so that all λ-s in the loadings matrix are free to

be estimated.

In addition to the CLVM now fully defined, nine more

models were constructed. By defining a large set of compet-

ing models and deciding to select between them, this proce-

dure is in line with the advice of McArdle (2011), who rec-

ommended that model selection begin with a confirmatory

phase and conclude with a more exploratory phase in which

competing models are considered.

Candidate models were inspired either by ad-hoc theories

of the PI task, by the desire to compare to a saturated or base-

line model, or were suggested by reviewers. The model just

described isM6. ModelsM1 throughM7 are variations on

this model, differing only in the loadings matrix Λ (details of

all models are given in the Appendix).

Three CLVMs (M8 throughM10) were constructed at the

suggestion of reviewers to focus on diffusion model parame-

ters other than the drift rate. Two models will be considered

with factorial structures that pertain to the nondecision time.

The first such model (M8) had the same loadings matrix as

K, above. The second nondecision time model (M9) had an

identity matrix for Λ9. Finally, one model (M10) had latent

variables simultaneously for drift rate and boundary separa-

7Under a unit factor variance constraint, the between-person

variance in factor scores is constrained to be 1. The practical im-

plementation of this constraint in a Bayesian context involves a

two-stage procedure in which the model is first estimated with un-

constrained factors but a constrained λ-structure, as above. In a

second stage, the estimated factor scores (φ̂) and loadings (λ̂ and

β̂) are rescaled: φ
(i)

( f ,p)
= φ̂

(i)

( f ,p)
/σ

(i)

( f )
, where the superscript i refers

to the ith sample in the MCMC chain, and σ
(i)

( f )
is the between-

person standard deviation in factor f at iteration i. Additionally,

λ
(i)

(t, f )
= λ̂

(i)

(t, f )
× σ

(i)

( f )
and β

(i)

(c, f )
= β̂

(i)

(c, f )
× σ

(i)

( f )
, for all covariates

c = 1, . . . ,C. In the loadings matrix, this will result in the constraint

that all λ-s that were originally set to 1 will now be freely estimated,

under the remaining constraint that λ-s that were originally set equal

to 1 within the same column of Λ are equal to one another. Note

that this change of constraint implies slightly different priors on the

affected parameters.
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tion, so that its measurement equation was:





















∆

A

M





















=

(

Λ10

B

)

×Φ,

with A referring to the vector of person-specific boundary

separation parameters. The weights matrix B now contains

two extra entries that connect the latent variable for bound-

ary separation to the personality covariates. The full loadings

matrix is given as Equation 5.

Priors. As in all Bayesian analyses, a CLVM in a

Bayesian framework requires that one define a number of

prior distributions. The priors used for the present analysis

are given in Figure 4). These priors are generally weakly

informative, specifying a plausible range for the parameters

but low weight to possible but unlikely values.

The normal distribution is conjugate for the drift rate of

the diffusion model (i.e., a normal prior leads to a normal full

conditional distribution) and is for that reason preferred for

the parameters relating to the drift rate. For the other parame-

ters of the diffusion model, no conjugate priors are available,

and priors were chosen that reflect knowledge of the scale

of the variables and that have positive density across a range

that is certain to contain the domain of the posterior.8

These priors, together with the data level in Equation 3

and the measurement equations Υ = K × Φ, fully define

the model. Figure 4 shows a graphical representation of

the model. Note how that graph includes as components

the graphical models for a diffusion model across conditions

(Fig. 2) and an LV model with various measures (Fig. 3),

which clearly visualizes the cross-breeding between model-

ing traditions.

Results—technical

For each of the models, JAGS was used to run eight

MCMC chains with 5,000 iterations each. From each chain,

3,000 samples were discarded as burn-in, leaving 16,000

posterior samples. Negligible chain autocorrelations indi-

cated good mixing and no need for chain thinning. With few

exceptions, potential scale reduction parameters (R̂; Gelman

et al., 2004) were less than 1.1 (and all were below 1.2), in-

dicating good chain convergence in all dimensions.

Results—model evaluation

For each of the models, we computed the DIC fit measure,

as well as model selection weights wM based on DIC. The

two best fitting models wereM10 (DIC10 = −2718) andM6

(DIC6 = −2281; fit information for all models is given in the

Appendix). The weights w were negligible for all models

exceptM10 (and so w10 ≈ 1). For interpretation purposes, it

is additionally worth noting a pattern across model solutions:

the CESD and RRS scales consistently turn out to relate to

the PI effect, and in particular to the PI effect in the negative-

target condition, across all models that include a PI effect.

Though the psychometric modeling approach does not re-

quire the model to capture minor aspects of the data ex-

actly, it is important for parameter interpretation that there

is at least a coarse correspondence between model and

data. Figure 5 provides diagnostic graphical contact between

modelM10 and the data. To construct that figure, posterior

predictive statistics were generated: data sets generated from

each of 5,000 samples that had been drawn from the full pos-

terior distribution of the model parameters. On each data set

so generated, as well as on the raw data, a set of summary

statistics was computed. In the figure, the distribution of

the statistics generated by the model (shades of grey; darker

means higher model-predicted density) is overlaid with the

raw data (the white markers). The posterior predictive check

does not indicate any systematic misfit.

Results—substantive

Part of the factor solution of the hybrid-data CLVM (M10)

is shown in Figure 6. The round markers indicating choice

RT tasks are all placed on an axis, indicating that the tasks

load exclusively on one dimension9, some more strongly

than others. More interesting for the present data is the loca-

tion of the questionnaire measures (CES-D and RRS; trian-

gular markers). The partial factor space shows both measures

in approximately the same location, loading strongly nega-

tively on the PI(−) dimension and the boundary separation

dimension, somewhat negatively on the DA—nonrecent fac-

tor, but very close to 0 on the PI(+) dimension. The loadings

were also close to 0 on the intercept, DA—recent, and PI(∅)

dimensions (not shown).

Table 1 shows the loadings (β-s) for both measures on

8Limited robustness checks were performed by introducing

changes in these priors. For example, a normal was changed to a

uniform over a wide range or vice versa, and no meaningful differ-

ences in the results were observed.
9This is by design, since PI can only occur in those trials where

detection is not at hand, and only one (valence-specific) type of PI

can occur at a time. This structure is also seen in the loadings ma-

trix where, disregarding the intercept (the first column), each row

contains at most one nonzero element. Note that this is a property

of the experimental paradigm and not a condition of the CLVM.
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1 0 0 0 0 0 0

1 0 1 0 0 0 0
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1 λ(5,2) 0 0 0 0 0

1 0 0 0 0 0 0

1 0 λ(7,3) 0 0 0 0

1 0 0 0 1 0 0

1 λ(9,2) 0 0 0 0 0

1 0 0 0 0 0 0

1 0 λ(11,3) 0 0 0 0

1 0 0 0 0 1 0

0 0 0 0 0 0 1
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nonrecent-yes, negative

nonrecent-no, negative

recent-yes, negative

recent-no, negative

nonrecent-yes, positive

nonrecent-no, positive

recent-yes, positive

recent-no, positive

nonrecent-yes, neutral

nonrecent-no, neutral

recent-yes, neutral

recent-no, neutral

boundary separation

CES-D

RRS

Equation 5: The measurement level of the hybrid-data CLVMM10 in the example application. In comparison to the measurement level

ofM6, this loadings matrix has an extra row and column to accommodate the person-specific boundary separation parameters, which now

follow the distribution α(p) ∼ N
(

φ(7,p), σ
2
α

)

.

each dimension. Out of twelve loadings, four show almost no

posterior mass around 0. This is also displayed in Figure 6,

where none of the credible interval ellipses intersect the hor-

izontal axis. Additionally, the covariate scores are well re-

covered by the model: the correlation between CES-D and

its latent proxy µ̂1 is .93 (ε̂2
1
= 0.33) and that between RRS

and µ̂2 is .91 (ε̂2
2
= 0.36). The conclusion of these covari-

ate results—that participants with higher scores on depres-

sion and rumination scales show poorer ability at inhibiting

interference from negative stimuli—is in line with cognitive

theories of depression (Gotlib, Roberts, & Gilboa, 1996).

Discussion of example application

The example analysis involved fitting a series of CLVMs

to a data set containing two types of data: 12 conditions of

a RT experiment and 2 personality trait measures. A single

underlying factor structure was defined that jointly predicted

behavior in the RT task and scores on the personality traits.

The use of a single unified model to tie together cognitive

model parameters with personality traits allowed for a spe-

cific, novel conclusion: participants with higher dysphoria

scores show more degraded information processing when a

cognitive task requires the suppression of lingering negative

thoughts. In the literature on cognitive theories of depres-

sion, this inertia of negatively valenced stimuli was predicted

to be connected to dysphoria (e.g., Gotlib et al., 1996), and

Table 1

The loadings of the covariate measures in the hybrid-data CLVM

factor solution (using a unit factor variance constraint).

Covariate: Depression Rumination

Latent variable Mean (SD) Mean (SD)

DA—recenta 0.05 (0.11) 0.04 (0.11)

DA—nonrecenta -0.22 (0.14) -0.20 (0.14)

PI(−)b -0.43∗ (0.14) -0.39∗ (0.14)

PI(+)b -0.04 (0.14) 0.05 (0.14)

PI(∅)b -0.15 (0.13) 0.01 (0.14)

Boundary separation -0.46∗ (0.16) -0.51∗ (0.15)

* Posterior p(β > 0) < 0.01.
a: DA = Detection ability. b: PI = Proactive interference.

these results are in line with that prediction. Additionally,

participants with high dysphoria scores turn out to have lower

boundary separation parameters.

The CLVM model appears to fit the data well, and the un-

covered relation between cognitive performance and dyspho-

ria is robust across variations of the model (i.e., the relation

hold in all models considered that contained a similar PI(−)

factor). The data appear to support the cognitive theory of

depression that involves the lingering of negative thoughts.
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yptiαp

τpt

Φp

Λt

δpt

µpcXpc

βcσc

p = 1 : P

i = 1 : I

t = 1 : T

c = 1 : C

priors

measurement level

(hybrid) data level

Φp ∼ MVN
(

0,
√
2Ip

)

Λt ∼ MVN
(

0,
√
2If

)

βc ∼ MVN
(

0,
√
2If

)

σ−2

c ∼ Γ (3, 1)

τpt ∼ N (µτ , σ
2

τ )

µτ ∼ N (0.3, 2)

σ−2

τ ∼ Γ (6, 1)

αp ∼ N (µα, σ
2

α)

µα ∼ N (1.5, 2)

σ−2

α ∼ Γ (6, 1)

δpt = Λt × Φp

µpc = βc × Φp

ypti ∼ W(αp, τpt, 0.5, δpt)

Xpc ∼ N (µpc, σ
2

c )

Figure 4. A graphical representation of the model used in the example application. In this graph, the p-plate indicates independent repetitions

over P participants, t over T tasks, i over I trials, and c over C external covariates. The defining aspect of a hybrid-data CLVM is shown

in the two arrows leaving the latent factor node Φ: The single set of underlying latent variables unifies the correlational structure among

and between ability parameters δ(t,p) and covariates X(c,p). The graphical models for a diffusion model (Fig. 2) and an LV model (Fig. 3) are

clearly subsumed in the graphical representation of the CLVM. Note that identification constraints are not represented in this display.

The utility of using a CLVM

Though a previous section made an a-priori rationale

for using a CLVM over more conventional approaches—

namely that it is a better approximation of the actual sam-

pling scheme of the data—one might still wonder how a tra-

ditional analysis would fare with the present data. At the

suggestion of a reviewer, a two-stage analysis was performed

in which (a) a subject-wise measure of PI was defined as the

mean RT in the recent-no condition minus that in the non-

recent-no condition, and then (b) the subject-wise measure

was regressed on the dysphoria scores on the tests. The re-

gression weight between the PI score and CES-D was small

but significant (β = −0.02, t97 = −2.48, p < .05, r2 = .06).

The regression weight with RRS did not reach significance

despite the large data set (β = −0.01, t97 = −1.60, ns).

It is not clear how this numerical result should be inter-

preted. Is CES-D related to a difference in mean RT because

lower dysphoria is associated with greater caution or inde-

cisiveness, which in turn causes heteroskedasticity10 and se-

lective exaggeration of RT differences? Or do negatively va-

lenced stimuli linger, causing processing interference if they

10Mean and standard deviation of RTs tend to be correlated (i.e.,

RTs show scalar variability). Greater caution therefore not only

causes an increase in mean RT, but also greater variability. A depen-

dent measure with greater variability will show exaggerated effects

for identical manipulations, causing an otherwise spurious correla-

tion between effect sizes and variability across participants.



14 VANDEKERCKHOVE

nonrecent-yes

n
o
n
re

ce
n
t-

n
o

nonrecent-yes
re

ce
n
t-

y
es

nonrecent-yes

re
ce

n
t-

n
o

nonrecent-no

re
ce

n
t-

y
es

nonrecent-no

re
ce

n
t-

n
o

recent-yes

re
ce

n
t-

n
o

Figure 5. Posterior predictive statistics from the PI model. Each white dot represents a participant’s mean RT in the task indicated by the

axis. Only results from the negative-target conditions are shown, but they were similar for the other two valences. The shaded area represents

the model-expected distribution of mean RTs. Several observations can be made. First, the RT means across tasks correlate in the raw data,

and the model clearly shows a corresponding covariance structure. Second, all the salient aspects of the data (location, variance, covariance)

are well captured by the model. Finally, there is no evidence in this posterior predictive check of systematic model misfit. Response accuracy

(not displayed) is captured similarly well.

become targets in a subsequent trial? The CLVM model al-

lowed the latter conclusion. Does RRS not carry a signif-

icant correlation because it is unrelated to PI? Perhaps the

comparison to the CLVM is unfair because the CLVM took

both covariates into account simultaneously and could ex-

ploit their collinearity? A multiple regression attempt us-

ing CES-D and RRS to jointly predict the negative-PI ef-

fect brought no solace for the traditional analysis (CES-D:

β = −0.02, t96 = −1.86, ns, RRS: β = −0.00, t96 = −0.01,

ns). More likely, the effect of RRS is occluded by the loss of

information going from one stage to the next.

In contrast to the traditional approach, the CLVM provides

parameter estimates with no such statistical pitfalls, and that

may be readily interpreted in process model terms.

General discussion

The present paper introduces and demonstrates a cogni-

tive latent variable model, a model that is a blend of cog-

nitive modeling and psychometric latent variable modeling.

This model permitted conclusions about structural relations

between cognitive constructs in a way that was not possible

through either component alone.

The current approach leaves room for a number of exten-

sions. For example, the structural level could be extended

to include higher level structures, so that not only the man-

ifest variables have a correlational structure, but the latent
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Figure 6. Four dimensions of the factor solution obtained from the hybrid-data CLVM M10. Left panel: The latent factors PI(+) and

PI(−) (corresponding to the fourth and fifth columns of the loadings matrix). Right panel: The latent factors boundary separation and

DA—nonrecent) (corresponding to the seventh and third columns of the loadings matrix). In each panel, an axis represents a latent factor, a

round marker a condition in the experiment, and a triangular marker a covariate (upward pointing for RSS, downward pointing for CES-D).

The location of a marker indicates the loadings on each latent factor, so that markers close to the origin are unrelated to the latent factors and

markers closer to the unit circle (dashed circle, drawn for reference only) are strongly related. The markers for covariates are surrounded by

a dashed ellipse, indicating the 99% Bayesian credibility interval of the location. Note that these loadings were obtained under a unit factor

variance constraint.

variables as well. Such models could be called cognitive

structural equation models. In such a model, the factor ma-

trix Φ would be subject to further constraints similar to the

ones implied by the measurement models used here, so that

Φ = Θ×Γ. A higher-order loadings matrix Θ together with a

low-dimensional set of more abstract abilities Γ would then

generate the basic factorsΦ—repeating the analogy used ear-

lier, Φ could contain mathematical ability (which underlies

positive correlations among mathematics tests) as well as

language ability (causing covariance among language tests),

but these two abilities might themselves be correlated with

one another due to the higher-order, more abstract ability in-

telligence.

Going one step further, one could consider nonlinear

structural equations, in which MVs are a function of the

interaction between multiple latent variables. Using the

same example, one might imagine that a test taker’s math-

ematical ability φM is expressed in a test through their lan-

guage ability φL—that is, their mathematics score is partly

modulated by their language ability. In this case, µ(c,p) =

λ(c,M×L)φ(M,p)φ(L,p) + . . . (where the ellipsis is used to omit

other potential additive factors).

On the strictly technical and implementational side, there

will be a need for more efficient parameter estimation rou-

tines. While the Monte Carlo methods we applied were ef-

fective, the analyses in the example took well over a day of

computing time. This computational expense is partly due to

the complex likelihood evaluation, but inefficient sampling

increased the computing time ten- or twentyfold. The JAGS

computing platform is highly customizable, modular, and ex-

tendable, so that the current sampler could be substituted for

a more efficient one (e.g., one that takes into account new

conjugacy relationships) without changing the model spec-

ification. Alternatively, the models could be implemented

in Stan, which is at the time of writing still under develop-

ment but may turn out to be more efficient due to its use of

the Hamiltonian Monte Carlo sampler (Hoffman & Gelman,

2011). Finally, the issue of model selection and model iden-

tification in a CLVM context will require careful attention.

Finding latent structure in interpretable cognitive model

parameters seems a highly appropriate endeavor for cogni-

tive scientists, and an integrative CLVM has many poten-
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tial applications. Many areas of psychology deal with la-

tent structures that are tapped by batteries of tests, and that

are only observed in the correlational pattern across tasks.

One example is working memory research, where batteries

of working memory tasks are administered in order to in-

fer the low-dimensional structure of working memory (e.g.,

Oberauer et al., 2000). Similarly, the structure of executive

functions is typically studied through large sets of smaller

tasks, each potentially with a cognitive model underlying it

(e.g., Miyake et al., 2000). Here the focus was on a diffusion

model data level, but these future applications may occasion

tailor-made data levels.
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Appendix

Parameter estimates for the various models in the example application

This Appendix lists parameter estimates for each of the models considered in the example application.

Models under consideration

There were ten different models, all with the same hybrid data level but differing in their measurement levels. The

estimated loadings matrices Λ are shown in this Appendix. In all matrices, loadings that were not estimated are displayed in

italics. Estimates are posterior means. Loadings are displayed with an asterisk if less than 1% of their posterior mass is on

the side of zero opposite the posterior mean (i.e., the posterior probability of the displayed sign of the loading is at least .99).

Unless otherwise noted, the first factor in all solutions is an intercept; the others are explained below. The bottom two rows

(or rightmost columns in the transposition) in a loadings matrix always refer to CESD and RRS, respectively.

Model 1 had only one latent factor for detection, with no PI effect.
(Λ|M1)T =

(

0.51* 0.51* 0.51* 0.51* 0.51* 0.51* 0.51* 0.51* 0.51* 0.51* 0.51* 0.51* 0.09 0.11

0.47* 0 0.47* 0 0.79* 0 0.22* 0 0.73* 0 0.23* 0 -0.18 -0.21

)

Model 2 had only one latent factor for detection and a constant PI effect across valences. Preferring this model over
M1 would indicate the existence of some PI effect.
(Λ|M2)T =





















0.51* 0.51* 0.51* 0.51* 0.51* 0.51* 0.51* 0.51* 0.51* 0.51* 0.51* 0.51* 0.21* 0.22*

0.47* 0 0.47* 0 0.78* 0 0.24* 0 0.73* 0 0.25* 0 -0.32* -0.34*

0 0 0 0.64* 0 0 0 0.64* 0 0 0 0.64* -0.27 -0.15





















Model 3 had a single latent factor for detection and three valence-specific factors for PI. Preferring this model overM2

would indicate that the PI effect depends on the valence of the stimulus.
(Λ|M3)T =









































0.57* 0.57* 0.57* 0.57* 0.57* 0.57* 0.57* 0.57* 0.57* 0.57* 0.57* 0.57* 0.16* 0.15*

0.61* 0 0.61* 0 0.61* 0 0.61* 0 0.61* 0 0.61* 0 -0.28* -0.31*

0 0 0 0.80* 0 0 0 0 0 0 0 0 -0.63* -0.60*

0 0 0 0 0 0 0 0.88* 0 0 0 0 -0.00 0.08

0 0 0 0 0 0 0 0 0 0 0 0.92* -0.06 0.07









































Model 4 had a single latent factor for detection and three valence-specific factors for PI, but the degree to which the
various valence conditions depend on the detection factor is no longer constant. Preferring this model overM3 would indicate
that the degree to which the detection factor affects the drift rate depends on the valence of the stimulus.
(Λ|M4)T =









































0.51* 0.51* 0.51* 0.51* 0.51* 0.51* 0.51* 0.51* 0.51* 0.51* 0.51* 0.51* 0.19* 0.18*

0.47* 0 0.47* 0 0.80* 0 0.24* 0 0.73* 0 0.24* 0 -0.29* -0.31*

0 0 0 0.81* 0 0 0 0 0 0 0 0 -0.63* -0.61*

0 0 0 0 0 0 0 0.88* 0 0 0 0 0.17 0.24

0 0 0 0 0 0 0 0 0 0 0 0.92* 0.03 0.15









































Model 5 had only one latent factor for detection, with detection no longer forced to be equal between the recent and
nonrecent yes conditions. Preferring this model over M4 would indicate that the influence of the detection factor scales
differently between the recent and nonrecent conditions.
(Λ|M5)T =









































0.50* 0.50* 0.50* 0.50* 0.50* 0.50* 0.50* 0.50* 0.50* 0.50* 0.50* 0.50* 0.14 0.14

0.95* 0 0.29* 0 0.75* 0 0.23* 0 0.68* 0 0.22* 0 -0.21 -0.24*

0 0 0 0.82* 0 0 0 0 0 0 0 0 -0.63* -0.62*

0 0 0 0 0 0 0 0.89* 0 0 0 0 0.36 0.41

0 0 0 0 0 0 0 0 0 0 0 0.92* 0.18 0.29








































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Model 6 had two latent factors for detection, and different PI effects across valences. Preferring this model overM5

would indicate that the drift rates are not strongly correlated between recent and nonrecent conditions, and merit separate
latent abilities.
(Λ|M6)T =



















































0.55* 0.55* 0.55* 0.55* 0.55* 0.55* 0.55* 0.55* 0.55* 0.55* 0.55* 0.55* 0.09 0.08

0.78* 0 0 0 0.66* 0 0 0 0.60* 0 0 0 -0.03 -0.04

0 0 0.75* 0 0 0 0.43* 0 0 0 0.53* 0 -0.41* -0.41*

0 0 0 0.81* 0 0 0 0 0 0 0 0 -0.61* -0.57*

0 0 0 0 0 0 0 0.87* 0 0 0 0 -0.10 -0.02

0 0 0 0 0 0 0 0 0 0 0 0.92* -0.10 0.04



















































Model 7 is a saturated model with respect to drift rates: it has one latent factor for each condition, and each of the latent
factors has a loading for the two covariates. Note that this model has no intercept:
(Λ|M7)T =



















































































































0.84* 0 0 0 0 0 0 0 0 0 0 0 -0.37 -0.28

0 0.79* 0 0 0 0 0 0 0 0 0 0 0.21 0.37

0 0 0.67* 0 0 0 0 0 0 0 0 0 -0.47* -0.30

0 0 0 0.87* 0 0 0 0 0 0 0 0 -0.44* -0.37

0 0 0 0 0.81* 0 0 0 0 0 0 0 0.47* 0.39*

0 0 0 0 0 0.71* 0 0 0 0 0 0 0.09 0.04

0 0 0 0 0 0 0.69* 0 0 0 0 0 0.03 -0.11

0 0 0 0 0 0 0 0.86* 0 0 0 0 0.07 0.15

0 0 0 0 0 0 0 0 0.80* 0 0 0 -0.11 -0.12

0 0 0 0 0 0 0 0 0 0.79* 0 0 0.35 0.09

0 0 0 0 0 0 0 0 0 0 0.74* 0 0.19 0.13

0 0 0 0 0 0 0 0 0 0 0 0.91* 0.04 0.17



















































































































Model 8 does not apply a structure to drift rates, but on nondecision time. The structure is identical to the one used in
M6:
(Λ|M8)T =



















































0.07* 0.07* 0.07* 0.07* 0.07* 0.07* 0.07* 0.07* 0.07* 0.07* 0.07* 0.07* 0.00 -0.01

0.06* 0 0 0 0.05* 0 0 0 0.05* 0 0 0 -0.00 0.04

0 0 0.07* 0 0 0 0.06* 0 0 0 0.06* 0 -0.05 -0.02

0 0 0 0.08* 0 0 0 0 0 0 0 0 -0.01 -0.03

0 0 0 0 0 0 0 0.07* 0 0 0 0 -0.02 0.00

0 0 0 0 0 0 0 0 0 0 0 0.07* 0.09 0.07



















































Model 9 is a saturated model with respect to nondecision time: it takes one latent factor for each condition’s nondecision
time. This model differs fromM7 in that the covariates are now tied to nondecision time instead of drift rate. Preferring this
model overM8 would indicate that nondecision time does not follow the design of the experiment.
(Λ|M9)T =



















































































































0.07* 0 0 0 0 0 0 0 0 0 0 0 -0.02 0.02

0 0.09* 0 0 0 0 0 0 0 0 0 0 -0.06 -0.10

0 0 0.08* 0 0 0 0 0 0 0 0 0 -0.02 -0.02

0 0 0 0.10* 0 0 0 0 0 0 0 0 -0.02 -0.05

0 0 0 0 0.07* 0 0 0 0 0 0 0 0.02 0.02

0 0 0 0 0 0.09* 0 0 0 0 0 0 0.08 0.01

0 0 0 0 0 0 0.08* 0 0 0 0 0 0.05 0.10

0 0 0 0 0 0 0 0.09* 0 0 0 0 -0.06 -0.03

0 0 0 0 0 0 0 0 0.07* 0 0 0 -0.02 0.00

0 0 0 0 0 0 0 0 0 0.08* 0 0 0.09 0.08

0 0 0 0 0 0 0 0 0 0 0.08* 0 -0.11 -0.09

0 0 0 0 0 0 0 0 0 0 0 0.10* 0.07 0.04


















































































































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Model 10 defines a factor structure that jointly involves drift rates, boundary separation, and the two covariates. The
first twelve rows of the loadings matrix apply the structure of the experimental design to the drift rate parameters, while the
thirteenth row relates an additional latent factor to the boundary separation. The final two rows relate all seven latent factors
to the personality covariates:
(Λ|M10)T =





























































0.54* 0.54* 0.54* 0.54* 0.54* 0.54* 0.54* 0.54* 0.54* 0.54* 0.54* 0.54* 0 0.34* 0.36*

0.80* 0 0 0 0.68* 0 0 0 0.61* 0 0 0 0 0.05 0.04

0 0 0.76* 0 0 0 0.44* 0 0 0 0.56* 0 0 -0.22 -0.20

0 0 0 0.86* 0 0 0 0 0 0 0 0 0 -0.43* -0.39*

0 0 0 0 0 0 0 0.88* 0 0 0 0 0 -0.04 0.05

0 0 0 0 0 0 0 0 0 0 0 0.93* 0 -0.15 0.01

0 0 0 0 0 0 0 0 0 0 0 0 0.54* -0.46* -0.51*





























































Model fit indices

The DIC values for the ten models were: DIC1 = −2196, DIC2 = −1959, DIC3 = −1771, DIC4 = −1989,

DIC5 = −2265, DIC6 = −2281, DIC7 = 1772, DIC8 = −1858, DIC9 = −1944, and DIC10 = −2718.


