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Diffusion models are widely-used and successful accounts of the time course of
two-choice decision making. Most diffusion models assume constant boundaries, which
are the threshold levels of evidence that must be sampled from a stimulus to reach
a decision. We summarize theoretical results from statistics that relate distributions of
decisions and response times to diffusion models with time-varying boundaries. We
then develop a computational method for finding time-varying boundaries from empirical
data, and apply our new method to two problems. The first problem involves finding
the time-varying boundaries that make diffusion models equivalent to the alternative
sequential sampling class of accumulator models. The second problem involves finding
the time-varying boundaries, at the individual level, that best fit empirical data for
perceptual stimuli that provide equal evidence for both decision alternatives. We discuss
the theoretical and modeling implications of using time-varying boundaries in diffusion
models, as well as the limitations and potential of our approach to their inference.
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1. INTRODUCTION
Being able to make a timely choice between two alternatives is
a cornerstone of human cognition, and a long-standing focus
of experimentation and theorizing in cognitive psychology. One
widely used approach to modeling the time course of deci-
sion making comes from the class of sequential sampling models
(Link and Heath, 1975; Ratcliff, 1978; Vickers, 1979; Luce, 1986;
Busemeyer and Townsend, 1993; Usher and McClelland, 2001;
Ratcliff and McKoon, 2008). In these models, people are assumed
to gather information, piece by piece, until they have accrued
enough evidence in favor of one or other alternative to justify
that decision. The most prominent and popular sequential sam-
pling models are diffusion models, which make the assumption
that the samples of evidence come from a Gaussian distribution,
and are accumulated according to a random walk that becomes a
diffusion process as the time-step between samples approaches a
limit of zero (Ratcliff, 1980, 1985, 1988, 2013; Ratcliff and Rouder,
1998, 2000; Ratcliff et al., 1999).

The basic diffusion model assumptions and operation are
shown graphically in Figure 1A. Evidence values are sampled
from a Gaussian with mean μ and standard deviation σ . These
values are accumulated in a single tally until the tally reaches
either the upper or lower boundaries shown by solid black
lines. Once the tally reaches a boundary, evidence accumula-
tion stops, and the model makes the decision associated with
the boundary that was reached, with a response time corre-
sponding to the number of samples taken. Figure 1A shows 10
example tallies by thin gray lines. It also shows by histograms
at the boundaries the distribution of response times for each
decision.

When applied to account for human decision-making, diffu-
sion models are usually extended beyond the basic form shown in
Figure 1A. Most often, additional parameters are added, intro-
ducing variability to the evidence accrual process, or incorpo-
rating encoding and retrieval processes, or processes that cause
leakage or drift in the tallies (e.g., Ratcliff, 1978; Busemeyer
and Townsend, 1992; Usher and McClelland, 2001; Ratcliff and
McKoon, 2008). In these expanded forms, diffusion models have
been widely applied to model human decision-making for a vari-
ety of tasks, including: many simple perceptual decisions like
coherent motion detection, line length comparison, and bright-
ness discrimination (e.g., Ratcliff and Rouder, 1998; Ratcliff
et al., 2003); simple cognitive tasks, like lexical decision (e.g.,
Ratcliff et al., 2004a; Wagenmakers et al., 2008); basic informa-
tion processing tasks like choice reaction time (e.g., Laming, 1968;
Link and Heath, 1975); memory processes (e.g., Ratcliff et al.,
2004b; White et al., 2009); and a range of more complex cog-
nitive decision tasks, including categorization and classification
(e.g., Nosofsky and Palmeri, 1997), heuristic decision-making
(e.g., Lee and Cummins, 2004; Lee and Zhang, 2012), and judg-
ment and choice (e.g., Wallsten and Barton, 1982; Busemeyer
and Rapoport, 1988; Busemeyer and Townsend, 1993; Diederich,
1997).

One area that has been under-explored in diffusion modeling
involves the use of time-varying boundaries. The vast majority
of diffusion models in psychology use constant boundaries, as
shown in Figure 1A. Constant boundaries were originally moti-
vated by optimality properties, in the sense that setting a bound-
ary corresponds to setting a Type I error rate, as in the sequential
probability ratio test (Wald and Wolfowitz, 1948). Some previous
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FIGURE 1 | The basic drift diffusion sequential sampling model of

two-choice decision-making and response times (A), and variants

involving time-varying boundaries (B–E). In each case, evidence values are

sampled from the same Gaussian distribution with mean μ and standard
deviation σ , but different boundaries lead to different response time
distributions for the two alternative decisions.

diffusion models, however, have considered within-trial changes
in boundaries, usually in the form of that converge over time (e.g.,
Pickett, 1968; Rapoport and Burkheimer, 1971; Clay and Goel,
1973; Viviani, 1979; Hockley and Murdock, 1987; Busemeyer and
Rapoport, 1988; Heath, 1992; Frazier and Yu, 2008; Milosavljevic
et al., 2010). Considering time-varying boundaries has become an
active area of research recently, both in the context of models that
combine neuro-psychological data with formal modeling of deci-
sion processes (e.g., Cisek et al., 2009; Gluth et al., 2012; Ratcliff
and Frank, 2012; Thura et al., 2012), and in the context of study-
ing the theoretical relationships between, and the falsifiability of,
sequential-sampling models (Jones and Dzhafarov, 2014).

Figures 1B–E show examples of different time-varying bound-
aries, and the distributions of decisions and response times they
produce for the same Gaussian evidence distribution. It is clear
that allowing this flexibility in diffusion models makes them capa-
ble of capturing both qualitatively and quantitatively different
decision and response time patterns. One reason for wanting
this flexibility is to accommodate patterns seen in empirical data,
especially arising from experimental task demands. Time-varying
boundaries could be regarded, for example, as implementing time
pressure, urgency-gating, or deadlines within a single decision
trial (Ditterich, 2006; Frazier and Yu, 2008; Cisek et al., 2009).
Another reason for considering time-varying boundaries is to
broaden the types of optimality in decision-making that can be
considered by diffusion models (e.g., Drugowitsch et al., 2012;
Ratcliff and Frank, 2012). While constant boundaries, as noted
above, optimize single decisions with respect to a fixed Type I

error rate, this is not the only possible criterion decision mak-
ers might optimize. For example, in some situations—such as
when there is not fixed number of decisions to be made, but
rather a fixed length of time in which any number of decisions
can be made—it might be more important to optimize the rate
at which correct decisions are made, rather than focus on the
correctness of each individual trial. A specific example is pro-
vided by Drugowitsch et al. (2012, Figure 3C), who showed
that the optimal boundaries for the Wiener diffusion model are
decreasing when there are multiple levels of difficulty and inter-
mixed trials in a 2-alternative-forced-choice (2AFC) task1. It is
when there is only one level of difficulty in the task that the
SPRT Optimality Theorem guarantees that the Wiener process
with constant boundaries (among all possible models) maximize
any reward criteria that are monotonically non-increasing with
respect to the response time (e.g., Bogacz et al., 2006, A.1.1).
Many real-world decision-making situations are more general,
and so afford possibility that time-varying boundaries may be
optimal. In general, different time-varying boundaries can often
be interpreted as optimizing different sorts of criteria relevant to
different decision-making situations.

In this paper, we develop a computational method for find-
ing time-varying boundaries from response time distributions

1Simulations in Khodadadi et al. (2014), on the other hand, show that a
Wiener process with constant boundaries is optimal for 2AFC with multiple
difficulty levels, when a cue is added before each trial indicating the difficulty
level of the upcoming trial.
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that does not constrain their form and does not commit to
specific theoretical assumptions about optimality. Our method
is motivated by relevant results from statistics that relate pat-
tern of decisions and response times to diffusion models with
time-varying boundaries. Our method does not constrain the
time-varying boundaries to a parametric family, but does require
knowing the mean and standard deviation of the Gaussian
evidence distribution.

To demonstrate our method, we apply it to two concrete prob-
lems. The first problem involves equating diffusion models with
an alternative class of sequential sampling models, known as
accumulator models, and requires applying our method to simu-
lated data. The second problem involves finding the time-varying
boundaries in a perceptual decision-making task in the case where
the visual stimulus provides the same level of evidence in favor of
either decision alternative. Applying our method at the individual
level, this second application allows us to consider basic indi-
vidual differences in the thresholds people use to make a simple
perceptual decision. We conclude with a discussion of the theoret-
ical and modeling implications of using time-varying boundaries
for diffusion models, as well as considering the limitations and
potential of our method.

2. FINDING TIME-VARYING BOUNDARIES
We approach the problem of finding time-varying boundaries as
one of solving an inverse problem numerically. There are three
important elements to our approach. The first element is hav-
ing a method for generating the decision and response time
distributions that are produced by a known Gaussian evidence
distribution and known time-varying boundaries. The second
element is a theoretical result that guarantees that any decision
and response time distribution, for a given Gaussian evidence dis-
tribution, is generated by unique time-varying boundaries. The
third element is a numerical method for finding those bound-
aries, given the Gaussian evidence distribution and decision and
response time distribution. In this section, we present each of
these three elements in turn.

2.1. GENERATING DATA FROM DIFFUSION MODELS WITH
TIME-VARYING BOUNDARIES

We study a diffusion model sampling evidence from the Gaussian
distribution with constant mean μ and standard deviation σ , but
with the additional flexibility of having time-varying boundaries.
This model generates a decision probability pdiff and response
time distributions rdiff

A and rdiff
B for the two decisions. Denoting

the decision boundaries as aA and aB for the two decisions,
where aA and aB are both time-dependent functions, the diffusion
model can be conceived as a mapping

mdiff : (μ, σ, aA, aB
)→ (

pdiff, rdiff
A , rdiff

B

)
. (1)

The mapping mdiff has been studied in the statistics literature,
and an effective approach using the analysis of renewal equa-
tions has been developed (Durbin, 1971; Buonocore et al., 1987,
1990). Buonocore et al. (1990) provide an efficient algorithm to
compute the response time distributions for time-varying bound-
aries. A summary of these methods well-suited for psychologists

is given by Smith (2000). In particular, data can be generated from
a diffusion model with flexible boundaries using general Markov
process methods. Because (Smith, 2000) does not provide results
for exactly the diffusion model we use (we use a special case of a
more general one that is provided), we give explicitly the details
needed to reproduce our results.

The basic idea is to specify how sample evidence paths X(t) are
generated, and then use existing results that give the first passage
time distributions through arbitrary boundaries that are contin-
uously differentiable. The diffusion model we study corresponds
to a Wiener process with a constant drift ξ and infinitesimal vari-
ance s2.2 Specifying the sample paths for this process is done by
specifying the transition density

f
(
x, t | y, τ

) = d

dx
F
(
x, t | y, τ

) = 1√
2π s2 (t − τ)

exp

(
−
(
x − y − ξ (t − τ)

)2

2s2 (t − τ)

)
(2)

where F
(
x, t | y, τ

)
is the probability of the tally being less than

or equal to x at time t, given its value at an earlier time τ was
y. Notice that both f and F are the densities when there is no
boundary.

The first passage time densities through the time-
varying absorbing boundaries, aA and aB, are denoted by
gA(aA(t), t|x0, t0) and gB(aB(t), t|x0, t0), where x0 and t0 are the
initial state and time. Analysis using the renewal equation (e.g.,
Durbin, 1971) yields the Volterra equations of the relationship
between the transition density and the first passage time densities
(Smith, 2000, Equation 41):

f (aA(t), t|x0, t0) = ∫ t
t0

gA(aA(τ ), τ |x0, t0)f (aA(t), t|aA(τ ), τ )dτ

+∫ t
t0

gB(aB(τ ), τ |x0, t0)f (aA(t), t|aB(τ ), τ )dτ

f (aB(t), t|x0, t0) = ∫ t
t0

gB(aB(τ ), τ |x0, t0)f (aB(t), t|aB(τ ), τ )dτ

+∫ t
t0

gA(aA(τ ), τ |x0, t0)f (aB(t), t|aA(τ ), τ )dτ

(3)

In principle, these equations are soluble, but f
(
x, t | y, τ

)
is

singular as t approaches τ , therefore Equation 3 needs to be trans-
formed stably for practical approximation methods. A detailed
description of the equation and the singularity issue can be
found in Smith (2000, pp. 430–432). The kernels of the trans-
formed equations can be found using the method developed
by Buonocore et al. (1987, 1990) and detailed by Smith (2000,
pp. 441–446). By letting μ(s) = μ = constant in Equation 57 of
Smith (2000), the proper function is

2We use μ and σ to denote the mean and standard deviation of the evidence
distribution, or incremental distribution, when we discretize the process to take
samples from N (

μ, σ
)
. We use the standard notation ξ and s for the drift

and the diffusion coefficient for the corresponding continuous drift diffusion
process.
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�
(
a (t) , t | y, τ

) = f
(
a (t) , t | y, τ

)
2

(
a′ (t)− a (t)− y

t − τ

)
(4)

where a(t) takes the form of aA or aB, and a′(t) denotes the first
derivative of the boundary. With these results in place, diffu-
sion model data can be produced directly from the first passage
time densities, gA and gB, which are the same as g1 and g2 in
Equations 47a and 47b of Smith (2000).

2.2. THEORETICAL RESULTS FOR THE INVERSE PROBLEM
The inverse first passage time problem—finding the boundaries,
given the evidence distribution and decision and response time
distribution—is much harder than the first passage time problem.
It has, however, been studied in the fields of applied mathemat-
ics and statistics (e.g., Capocelli and Ricciardi, 1972; Cheng et al.,
2006; Chen et al., 2011).

Analytic expressions for the boundaries are rarely available and
previous research has usually focused on developing numerical
methods for computing the boundary. Theoretical work has been
relatively scarce. Early work by Capocelli and Ricciardi (1972)
addressed the problem of under what conditions an arbitrary
density function can be interpreted as the first passage density
function for a continuous one-dimensional Markov process with
constant boundaries and a known starting value. Some relevant
results, in the context of the types of sequential sampling models
used to model human decision-making, were obtained. In par-
ticular, Capocelli and Ricciardi (1972, corollary 2.2) found the
technical conditions that guarantee the uniqueness of the solu-
tion, if it exists, for the Wiener-Lévy and the Ornstein-Uhlenbeck
diffusion processes with specified initial condition.

Cheng et al. (2006) were the first to study the well-posedness—
that is, the existence and uniqueness—of a specific inverse first-
passage time problem close to that of interest in our study. Cheng
et al. (2006) addressed the case where a diffusion model has a
single boundary, so that there is only one possible decision, and
the response time for that decision is being measured. For that
case, they proved that for any probability density function q, there
exists a unique viscosity solution to the inverse-first-passage-time
problem (i.e., a unique boundary exists under weak assumptions
of differentiability). Analogous results for the two-boundary case
of direct interest remain an open (and active) research question in
the statistics literature. To date, there is no proof that the numeri-
cal method developed in the next section of the paper always finds
a unique solution.

2.3. A NUMERICAL METHOD FOR FINDING TIME-VARYING
BOUNDARIES

Zucca and Sacerdote (2009) and Song and Zipkin (2011) devel-
oped numerical methods for finding time-varying boundaries
in the one-boundary case. Because we are interested in diffu-
sion models with two time-varying boundaries, we rely on the
approach used by Buonocore et al. (1990). In essence, our method
applies this approach, previously used as a forward method only,
to the problem of finding two time-varying boundaries.

Algorithm 1 presents the main part of our numerical method
for computing the time-varying boundaries as pseudo code. The
aim of the algorithm is to find the two boundaries such that the

Algorithm 1 | Compute the discretized boundaries aA (n) and aB (n),

n = 1, 2, · · · , with input μ, σ , PA,n, and PB,n.

Discretize [0, 1] into I small intervals (grid for the boundary)

for n = 1 to N do

Compute PA,n and PB,n

for i = 1 to I do

cA(i) = i/I

cB(i) = −i/I

qA(i)← gA(cA(i), nλ | x0 = 0, t0 = 0)

qB(i)← gB(cB(i), nλ | x0 = 0, t0 = 0) gA, gB as in
Smith (2000), Equation 47

end for

aA (n)← arg mini
∣∣qA

(
i
)
λ− PA,n

∣∣ /I

aB (n)←− arg mini
∣∣qB

(
i
)
λ− PB,n

∣∣ /I

end for

first passage time densities of the process through those bound-
aries are equal to two desired specific density functions. The
algorithm sets the interval between sampling steps to be a small
value λ, and calculates the probabilities PA,n and PB,n that deci-
sion alternatives “A” and “B,” respectively, will be chosen after n
samples. In practice, PA,n and PB,n can be obtained by discretiz-
ing the empirical RT distributions for the two alternatives. For the
diffusion model discretized to the same sampling interval λ, and
using the same Gaussian evidence distribution, the drift rate is
ξ = μ/λ and the diffusion coefficient is s, where s2 = σ 2/λ. The
first-order derivative of the boundary at step n can be approxi-
mated by a′ (n) = [a (n)− a (n− 1)] /λ. These values allow the
calculation of Equations 2 and 4 above.

The algorithm finds the time-varying boundary through a
point-wise approach to its construction, receiving samples from
the same Gaussian evidence distribution with mean μ and stan-
dard deviation σ . Because the boundaries scale with σ without
changing shape, and our assumption that the decision process
starts without bias, the initial values of the boundaries can be
fixed at+1 and−1, without loss of generality.

The algorithm now sets the equalities gA (2) λ = PA,2 and
gB (2) λ = PB,2, allowing for the solution of the boundaries at
the second sample aA (2) and aB (2). These steps of the algorithm
are now repeated for all of the samples, to find both boundaries
in their entirety. Once aA (1) , . . . aA (n), and aB (1) , . . . aB (n)

are available, it is possible to solve for aA (n+ 1) and aB (n+ 1)

by setting the first passage time densities to be equal, so that
gA (n+ 1) λ = PA,n+1 and gB (n+ 1) λ = PB,n+1.

Our algorithm solves the equations at each sample using a sim-
ple grid search approach. Values between 0 and 1 are examined
by a small increment l = 0.01 up to N, where N is a large number
chosen such that the value of the response time distribution at Nλ

is negligibly small for both decisions.
The recursive nature of the algorithm means that numeri-

cal precision errors accumulate as the sample being considered
progresses. In practice, we found this sometimes necessitates a
second corrective part to our numerical method. For later sam-
ples beyond a critical value, we fit the boundary a piece-wise
linear curve, each segment containing 2–3 steps, minimizing the
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deviation between the simulated and the target first passage time
distributions. The boundary that is found is thus a combination
of the values returned by the algorithm up to the critical step, and
brute-force piece-wise linear curve fitting.

3. APPLICATIONS OF OUR ALGORITHM
In this section, we apply our algorithm to two problems. The first
problem is theoretical, and involves the relationship between dif-
fusion classes of sequential-sampling models. The second prob-
lem is empirical, and involves finding the time-varying bound-
aries for individual subjects from their behavioral data in key
trials of a simple perceptual decision-making task.

3.1. EQUATING ACCUMULATOR AND DIFFUSION MODELS
Within the sequential sampling framework, an alternative to
the class of diffusion model is the class of accumulator models
(Vickers, 1970, 1979). As shown in Figure 2, accumulator mod-
els maintain two separate evidence tallies, one for each alternative
decision. Each sampled piece of evidence favors one or the other
decision, and only those samples that favor a decision are added
to their corresponding tally. The first tally to reach the boundary
results in that decision being made, and the response time is the
number of samples required for this to happen.

Because of their different evidence accrual mechanisms, diffu-
sion and accumulator model are usually regarded as being qual-
itatively different, and treated as competing accounts of human
decision making. Empirically, the standard conclusion is that dif-
fusion models are superior accounts of data (e.g., Ratcliff and
Smith, 2004), although there are some studies that find in favor
of accumulator models (e.g., Lee and Corlett, 2003). Bogacz et al.
(2006) compare diffusion and accumulator models theoretically,
in terms of a set of optimality properties, and conclude that
accumulator models cannot be reduced to diffusion models.

Complementing this focus on the two models as competing
accounts of human decision-making, a natural application of
our method is to find the time-varying boundaries that make a
diffusion model equivalent to an accumulator model with con-
stant boundaries and the same Gaussian evidence distribution.
This goal can be seen as a natural extension of the long-standing
equivalence result presented by Pike (1968) between random-
walk and race models, which are the discrete analogs, respectively,
of diffusion and accumulator models. Pike (1968, Section 4.3)

showed that, when the evidence samples are unit increments
or decrements, simple time-varying boundaries, decreasing one
unit in each time step, make the random-walk decisions and
response-time distributions equivalent to the race model.

Formally, we consider the accumulator model sampling evi-
dence from the Gaussian distribution with mean μ and standard
deviation σ , and with a fixed starting point 0 and symmetric
thresholds. This model generates a decision probability pacc for
choosing decision A, and response time distributions racc

A and
racc

B for the two decisions. Thus, the accumulator model can be
conceived as the mapping

macc : (μ, σ
)→ (

pacc, racc
A , racc

B

)
. (5)

Equating accumulator and diffusion models requires finding
the boundaries aA (n) and aB (n), such that

(
pacc, racc

A , racc
B

) =(
pdiff, rdiff

A , rdiff
B

)
.

The mapping macc has been well-studied. Smith and Vickers
(1988) provided an analytical expression, in the form of con-
volutions of the evidence distribution. For Gaussian evidence
distributions, there is no closed-form solution, but a discrete
approximation method is provided by Smith and Vickers (1989).
In particular, we used the method detailed by Smith and Vickers
(1989, Appendix A). Their Equations A3a and A3b define PA,n

and PB,n which are, respectively, the probability the accumulator
model will choose alternative “A” or “B” after n samples.

Figure 3 shows four examples of the boundaries found by our
algorithm. Each example corresponds to a different Gaussian evi-
dence distribution, using means of μ = 0.01 and μ = 0.05 and
standard deviations of σ = 0.1 and σ = 0.12. For these parame-
ter combinations, we generated response-time distributions from
an accumulator model. These distributions provided the input to
our algorithm.

The boundaries found by the algorithm are shown in the main
left-hand panel for each example in Figure 3. The part of the
boundary found by the main algorithm is shown as a solid line,
while the part found by the piece-wise approximation is shown as
a broken line.3 The basic result is that the decision probabilities

3The Appendix provides more detail on the piece-wise approximation in this
application.

FIGURE 2 | The accumulator sequential sampling model.
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FIGURE 3 | Examples of the boundaries that equate a diffusion evidence

accrual process with an accumulator model using constant boundaries.

The four examples correspond to four different evidence distributions, with
values for the means μ and standard deviations σ indicated in the panels. In
each example, the left-hand panel shows the time-varying boundaries found
by our algorithm, with the part of the boundary found by the main algorithm

shown as a solid line, while the part found by the piece-wise approximation
shown as a broken line. The right-hand panels show the response time
distributions for the two boundaries, weighted by the decision probability for
each alternative. The accumulator distributions are shown as solid lines, and
the diffusion distributions are shown by gray histograms. The values in the
top-right corners show the choice probabilities.

and response-time distributions generated by accumulator mod-
els correspond to those generated by a diffusion evidence accrual
process with time-varying boundaries.

The right-hand panels in Figure 3 correspond to the two-
decision alternatives, and show the accumulator and diffusion
response-time distributions, as solid lines and gray histograms,
respectively. These distributions are weighted by the decision
probabilities, and so capture all of the aspects of model behavior
that need to be equated. It is clear that the decision probabilities
and response times generated by the diffusion evidence accrual
process with the time-varying boundaries are very close to the
target accumulator model distributions.

The four evidence distributions illustrated in Figure 3 span
the interesting range of possibilities. They include cases where
the response time distributions are skewed as well as symmetric,
and cases where the mean response times for the two decisions
are very different as well as very similar. They also include a wide
range of decision probabilities, ranging from close to 50% down
to about 1%.

The basic result is that diffusion models with time-varying
boundaries, of the type shown in Figure 3, produce the same
decisions and response time distributions as accumulator mod-
els with constant boundaries. An important aspect of this result
is that the boundaries are established before any particular evi-
dence sequence is encountered. The nature of the boundaries is
not developed or changed as evidence is sampled within a trial.

While establishing equivalence dynamically by adapting to cur-
rent evidence is an interesting research problem in its own right
(e.g., Hockley and Murdock, 1987), the current results establish a
more general equivalence. They show what sorts of time-varying
boundaries make the diffusion approach to evidence accrual the
same as standard accumulator approaches.

An interesting aspect of the results in Figure 3 is that it is
clear that the time-varying boundaries are, in general, asymmet-
ric. For example, when the evidence distribution is a Gaussian
with μ = 0.05 and σ = 0.10, the lower boundary converges to
zero more quickly than the upper boundary. Figure 4 presents
a follow-up analysis, exploring how important symmetry is to
equate accumulator and diffusion approaches to evidence accrual.
Figure 4 shows the response-time distributions for the same
examples considered in Figure 3, but using a modified algorithm
that constrains the boundaries to be symmetric. For the evidence
distributions with mean μ = 0.01 there is still close agreement
between the accumulator and diffusion response time distribu-
tions. For the more extreme examples with mean μ = 0.05, the
qualitative properties of different mean response times and neg-
ative skew are preserved, but there is quantitative disagreement
between the accumulator and diffusion distributions.

3.2. BOUNDARIES FOR AMBIGUOUS PERCEPTUAL STIMULI
One of the most intuitive motivations for considering diffu-
sion models with time-varying boundaries relates to the case
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FIGURE 4 | Accumulator and diffusion response time distributions, under the constraint of symmetric boundaries, for four example evidence

distributions.

of non-evidential stimuli. These are stimuli that provide equal
evidence for both response alternatives, and so the expecta-
tion of the evidence distribution is zero (i.e., μ = 0). For these
stimuli, constant boundaries predict at least some extremely
long response times, even though there is no information to
be gained from repeated sampling from the stimulus. This pre-
diction seems problematic, both empirically and theoretically,
and has even led to sequential sampling models of human
decision-making being lambasted in non-psychological litera-
tures (Lamport, 2012). Converging boundaries provide a natural
mechanism for ensuring a decision is made in a reasonable time,
without needing to invoke additional psychological assumptions
like over-riding termination processes.

Against this background, one interesting application of our
method is to find the type of boundaries consistent with behav-
ioral data for non-evidential stimuli. We consider data collected
and analyzed by Ratcliff and Rouder (1998), which have also
been examined by a number of other authors (e.g., Brown and
Heathcote, 2005; Vandekerckhove et al., 2008). The Ratcliff and
Rouder (1998) data involve three individual subjects each doing
about 8000 trials over 11 days on a brightness discrimination task,
under both speed and accuracy instructions. The stimuli con-
sist of visual arrays of black and white dots, with the number of
black and white dots controlling the evidence they provide for the
choice alternatives bright and dark. Of the 33 different levels of
brightness considered by Ratcliff and Rouder (1998), we focus on
just those stimuli with equal numbers of black and white dots that
(objectively) provide no evidence for either response alternative.

To apply our algorithm to these data, we had to make a
number of simplifying assumptions. First, we assumed that the

drift rate was zero, because of the objective properties of the stim-
uli. Obviously, it is possible that psychologically the stimuli are
perceived as favoring one alternative or the other, through some
form of bias. Secondly, we shifted the response time distributions
according to the smallest response time observed for each indi-
vidual in each condition. This is a simple empirical approach
that probably only roughly approximates the underlying time
to encode and respond that requires the shift. Finally, because
our method proved unstable with respect to the multi-modalities
inherent in binned characterizations of the data, we first fit a
Weibull function to the response time distributions, and applied
our algorithm to samples from these distributions.

Figure 5 shows the results of our method on the
Ratcliff and Rouder (1998) data, as applied to the accuracy
condition.4 We used the Pearson’s Chi-square tests standardly
used in this literature5 to evaluate the goodness-of-fit of the
Weibull distributions, binning the response times by decile,
d.f . = 7. For subject “JF,” the Chi-square statistics and corre-
sponding p-values for both alternatives are 7.14 (p = 0.41) and
13.02 (p = 0.07); for subject “KR,” they are 4.69 (p = 0.70) and
9.01 (p = 0.25); for “NH," they are 10.02 (p = 0.19) and 10.99
(p = 0.14). The three rows in Figure 5 correspond to the three
individual subjects:“JF,” “KR,” and “NH.” The main panels on
the left show the boundaries found by our algorithm, with

4We focused only on the accuracy condition, because we found the Weibull
to be an inadequate characterization of the response time distributions in the
speed condition.
5We are aware of the limitations of both the chi-square statistics and the use
of p-values on which this analysis is based.
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FIGURE 5 | Results of applying our algorithm to the three subjects

from the Ratcliff and Rouder (1998) data, when viewing non-evidential

perceptual stimuli in a brightness discrimination task under accuracy

instructions. The rows correspond to the three individual subjects:“JF,”
“KR,” and “NH.” The main panels on the left show the boundaries found by
our algorithm for the two decisions. The smaller panels on the right show
the distribution of empirical response times (as gray histograms) and the
distributions of response times generated by the boundaries (as solid lines)
for the two decisions. The values in the top-right corners show the choice
probabilities.

respond to discretized samples of 0.01 s duration. Here, we
assume that every subject has the same evidence distribution,
arbitrarily chosen to be N(0, 0.01), thus the starting values of the
boundaries are now free parameters. The smaller panels on the
right show the distributions of empirical response times (as gray
histograms) and the distributions of response times generated by
the time-varying boundaries found by our algorithm (as solid
lines) for the two decision alternatives, measured in seconds.
There is reasonably good agreement between these distributions,
although it is better for some subjects (e.g., “JF”) than others. It is
also clear that there are significant individual differences between
the subjects, with “KR” taking longer to make decisions for these
non-evidential stimuli.

Most interestingly, Figure 5 shows, once again, that the bound-
aries found are ones that converge asymmetrically. After an
extended period of requiring the same level of evidence, both
boundaries drop sharply toward zero and converge. They com-
mence their descents at different times, though, with the lower
boundary always converging first, but less sharply. Intuitively,
when the stimulus favors neither alternative, symmetric bound-
aries should be able to fit the data well. We calculate the
boundaries using the algorithm with the symmetry constraint
in Appendix B, and find that the restricted algorithm finds

boundaries close to the boundaries found by the original
algorithm.

4. DISCUSSION
Sequential sampling models are compelling accounts of the time
course of human decision-making, based on the simple assump-
tion that people sample information from a stimulus until they
have enough evidence to make a decision. The default assump-
tion in psychological modeling has been that the level of evidence
required to make a decision does not change during this sampling
process. The more general idea that the level of evidence might
change during sampling is an appealing one, and the possibility
that the evidence boundaries triggering decisions converge over
time is an important one.

Most previous work dealing with time-varying boundaries
has either involved assuming a parametric form for time-varying
boundaries and fitting them to data (e.g., Milosavljevic et al.,
2010; Ratcliff and Frank, 2012), fitting more general stochastic
processes (e.g., Viviani, 1979), or making theoretical assumptions
about optimality from which boundaries are derived by meth-
ods like dynamic programming (e.g., Frazier and Yu, 2008). In
this paper, we have taken the first steps toward a more general
approach that places minimal constraints on the form of time-
varying boundaries, with the aim of finding their form from the
response time distributions they produce.

We developed a method for finding time-varying boundaries
that tries to solve the inverse problem of finding the boundaries
that generate a given response time distribution for a known
Gaussian evidence distribution. This method is related to cur-
rent theoretical and practical work in statistics (e.g., Capocelli
and Ricciardi, 1972; Cheng et al., 2006; Zucca and Sacerdote,
2009; Chen et al., 2011; Song and Zipkin, 2011). There remain
important theoretical and practical gaps in these links, how-
ever, that future work should address. Theoretically, guarantees
for the existence of time-varying boundaries being able to gen-
erate any response time distribution are available only for the
single-boundary case. Practically, our current approach of solv-
ing an inverse problem can and should be generalized to one of
solving an inference problem, placed priors on the time-varying
boundaries that are possible, and expressing uncertainty over
those possibilities based on available data. Our current algo-
rithm, for example, does not allow for any characterization, such
as a credible interval, of the uncertainty inherent in the fitted
boundaries. Future work should aim to approach the problem as
one of inference rather than inversion to provide this important
information.

For these reasons, we think the two applications we pre-
sented of our method highlight the potential of the general
approach, but constitute a starting point rather than a mature
method. The theoretical application of our method showed that
diffusion processes for accruing evidence, when allowed time-
varying boundaries, produce the same behavior as the alternative
class of accumulator accrual processes. This result is important,
because it encourages a more general modeling perspective than
seeing diffusion and accumulator models as incommensurable
rivals. It also raises theoretical challenges, such as understand-
ing the difference between what standard diffusion models with
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constant boundaries and standard accumulators are optimizing,
and understanding the asymmetry of the boundaries that are
inferred.

One interpretation of the asymmetry and its behavioral con-
sequences is that accumulator evidence accrual is, in fact, fun-
damentally different from diffusion evidence accrual, in those
situations where the decision-maker must be able to specify deci-
sion boundaries before a trial starts. This is because there is no
way of knowing a priori which decision is favored by the stim-
ulus, and so symmetry of the decision boundaries is a basic
requirement. A counter-argument is that Figure 4 shows that
imposing symmetry on the time-varying boundary still leads to
close mimicry, and retains agreement on the fundamental quali-
tative features of the decisions and response times. Thus, it might
be argued that there is a practical equivalence, in which empir-
ical data might be equally well-explained by either model. In
this sense, our analysis of the asymmetry raised more theoret-
ical questions than it answered, but these questions would not
have arisen or be able to be addressed without the capability to
examine time-varying boundaries. Thus, we view this application
of our method as one of those results that serves to sharpen the
theoretical questions, and so usefully advances the field.

Similarly, our analysis of the response time distributions peo-
ple produce when faced with perceptual stimuli that favored
neither alternative is incomplete. We had to make a number
of strong simplifying assumptions to apply our algorithm, and
we think the boundaries we found should be treated as indica-
tive rather than definitive. But this application did constitute
a first productive step toward the important general goal of
being able to find time-varying boundaries for diffusion models
directly from individual-level behavioral data. The ultimate goal
is an approach in which all of the relevant parameters, includ-
ing properties of the evidence distribution, biases, encoding and
responding times, and other properties of the decision-making
process can be inferred simultaneously with unconstrained time-
varying boundaries needed to account for a large set of empirical
data varying across stimuli, task instructions, and other relevant
manipulations.

Sequential sampling models are a powerful, popular, and
important approach to understanding human decision-making.
Extending these models to allow for time-varying boundaries
has the potential to enhance greatly what they might help us
learn about nature of human decision-making. We hope that the
method developed and applied in this paper constitutes a first step
toward realizing that potential.
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APPENDIX A
Figure A1 shows the numerical problem in the main algorithm
that requires the addition of the piece-wise linear correction. It
shows the results of applying the unmodified Algorithm 1 to the
response time distribution generated by an accumulator model
with with Gaussian evidence distribution parameters μ = 0.01
and σ = 0.1 considered in the top-left of Figure 3. The left hand
panel of Figure A1 shows the boundaries found, which differ
from those in Figure 3 after the 26th sample, as indicated by
the broken lines. The right hand panel of Figure A1 shows the
target response time distributions generated by the accumulator
model as solid lines, and the distributions generated from the

boundary found by the unmodified algorithm as a line with aster-
isk markers. Using a small tolerance for the difference between
these expected and generated distributions, it is possible to iden-
tify the critical point, highlighted by the magnification in the
right hand panel, beyond which the piece-wise linear correction is
applied.

APPENDIX B
Figure A2 shows the results of applying a modified version of our
algorithm that is constrained to find symmetric boundaries to the
data from non-evidential stimuli for the three subjects considered
by Ratcliff and Rouder (1998).

FIGURE A1 | Illustration of numerical problems with the basic

algorithm The left-hand panel shows the boundary returned by

the algorithm without correction. The right-hand panel shows with

asterisks the response time distributions generated by the boundaries
in the left-hand panel. The target densities generated by the
accumulator model are shown in solid lines.

FIGURE A2 | Symmetric boundaries (shown as the broken lines)

found for the three subjects using the restricted algorithm,

superimposed with the asymmetric boundaries as in Figure 5.
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